

Overview

Project Summary

● Name: Jungle(JNGL) Token
● Platform: Ethereum
● Address: 0x4C45bbEc2fF7810ef4a77ad7BD4757C446Fe4155
● Language: Solidity
● Audit Range: See Appendix - 1

Project Dashboard
Application Summary

Name Jungle(JNGL) Token

Version v2

Type Solidity

Date Oct 09 2023

Logs Oct 08 2023; Oct 09 2023

Vulnerability Summary

Total High-Severity issues 0

Total Medium-Severity issues 0

Total Low-Severity issues 2

Total informational issues 2

Total 4

Contact
E-mail: support@salusec.io

1

https://etherscan.io/address/0x4c45bbec2ff7810ef4a77ad7bd4757c446fe4155#code

Risk Level Description

High Risk

The issue puts a large number of users’ sensitive

information at risk, or is reasonably likely to lead to

catastrophic impact for clients’ reputations or serious

financial implications for clients and users.

Medium Risk

The issue puts a subset of users’ sensitive

information at risk, would be detrimental to the client’s

reputation if exploited, or is reasonably likely to lead

to a moderate financial impact.

Low Risk

The risk is relatively small and could not be exploited

on a recurring basis, or is a risk that the client has

indicated is low impact in view of the client’s business

circumstances.

Informational
The issue does not pose an immediate risk, but is

relevant to security best practices or defense in

depth.

2

Content

Introduction 4
1.1 About SALUS 4
1.2 Audit Breakdown 4
1.3 Disclaimer 4

Findings 5
2.1 Summary of Findings 5
2.2 Notable Findings 6

1. Centralization risk 6
2. Missing event for critical state change 8

2.3 Informational Findings 9
3. Could use the 2-step ownership transfer process 9
4. Floating compiler version 10

Appendix 11
Appendix 1 - Files in Scope 11

3

Introduction

1.1 About SALUS
At Salus Security, we are in the business of trust.

We are dedicated to tackling the toughest security challenges facing the industry today. By
building foundational trust in technology and infrastructure through security, we help clients
to lead their respective industries and unlock their full Web3 potential.

Our team of security experts employ industry-leading proof-of-concept (PoC) methodology
for demonstrating smart contract vulnerabilities, coupled with advanced red teaming
capabilities and a stereoscopic vulnerability detection service, to deliver comprehensive
security assessments that allow clients to stay ahead of the curve.

In addition to smart contract audits and red teaming, our Rapid Detection Service for smart
contracts aims to make security accessible to all. This high calibre, yet cost-efficient, security
tool has been designed to support a wide range of business needs including investment due
diligence, security and code quality assessments, and code optimisation.

We are reachable on Telegram (https://t.me/salusec), Twitter (https://twitter.com/salus_sec),
or Email (support@salusec.io).

1.2 Audit Breakdown
The objective was to evaluate the repository for security-related issues, code quality, and
adherence to specifications and best practices. Possible issues we looked for included (but
are not limited to):

● Risky external calls
● Integer overflow/underflow
● Transaction-ordering dependence
● Timestamp dependence
● Access control
● Call stack limits and mishandled exceptions
● Number rounding errors
● Centralization of power
● Logical oversights and denial of service
● Business logic specification
● Code clones, functionality duplication

1.3 Disclaimer
Note that this security audit is not designed to replace functional tests required before any
software release and does not give any warranties on finding all possible security issues with
the given smart contract(s) or blockchain software, i.e., the evaluation result does not
guarantee the nonexistence of any further findings of security issues.

4

Findings
2.1 Summary of Findings

ID Title Severity Category Status

1 Centralization risk Low Centralization Acknowledged

2 Missing event for critical state change Low Logging Acknowledged

3 Could use the 2-step ownership transfer process Informational Access Control Acknowledged

4 Floating compiler version Informational Configuration Acknowledged

5

2.2 Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

1. Centralization risk

Severity: Low Category: Centralization

Target:
- JungleToken.sol

Description

The JungleToken contract has a privileged `owner` role. The `owner` can:
- modify the sell tax using setSellTax()
- modify the buy tax using setBuyTax()
- modify the mev tax using setMevTax()
- update the treasury address using setTreasury()
- update the uniswapV2Pair variable using setRule()

It should be noted that there is no upper limit for tax in the setSellTax(), setBuyTax(), and
setMevTax() functions. If a malicious owner sets, let’s say the buy tax, to 100%, the users
will not receive any JNGL tokens when buying JNGL from the `uniswapV2Pair`. The fee will
be sent to the `treasury` address, which can be set by the owner.

JungleToken.sol:L677-L688
function _beforeTokenTransfer(

address from,
address to,
uint256 /* amount */

) override internal virtual {

if (uniswapV2Pair == address(0)) {
require(from == owner() || to == owner(), "trading is not started");
return;

}

}

Also note that the _beforeTokenTransfer() hook includes a check: if `uniswapV2Pair` equals
address(0), token transfer will revert with an exception for the owner account. This allows a
malicious owner to make the JNGL token non-transferable by setting `uniswapV2Pair` to
address(0) using setRule().

In summary, should the owner’s private key be compromised, the attacker can set taxes to
100% and profit from users’ swaps. The attacker can also make the JNGL token
non-transferrable, which disrupts the functioning of other contracts integrated with the JNGL
token.

Recommendation

The current owner address, 0x52C6a19e6B79CD5D24d32EE26c6da75eEd2e535D, is a

6

https://etherscan.io/address/0x52C6a19e6B79CD5D24d32EE26c6da75eEd2e535D

plain EOA account. We recommend transferring the owner role to a multi-sig account with
timelock governors for enhanced security.

Additionally, we recommend adding an upper limit for taxes in the setSellTax(), setBuyTax(),
and setMevTax() functions. It is also advisable to include a zero-address check for the
`uniswapV2Pair` variable in the setRule() function.

Status

This issue has been acknowledged by the team.

7

2. Missing event for critical state change

Severity: Low Category: Logging

Target:
- JungleToken.sol

Description

Important parameter or configuration changes should trigger an event to enable tracking
off-chain.

However, the setRule(), setTreasury(), setSellTax(), setBuyTax(), and setMevTax() functions
alter important states without emitting any events.

Recommendation

It is recommended to design proper events and incorporate them into the aforementioned
functions.

Status

This issue has been acknowledged by the team.

8

2.3 Informational Findings

3. Could use the 2-step ownership transfer process

Severity: Informational Category: Access Control

Target:
- JungleToken.sol

Description

The current ownership transfer process involves the current owner calling
transferOwnership(), which writes the new owner's address into the owner's state variable.
However, if the nominated EOA account is not a valid account, it is entirely possible the
owner may accidentally transfer ownership to an uncontrolled account, breaking all
owner-only functions.

It’s recommended to adopt a 2-step process for ownership transfer. In this approach, the
owner can designate an address as the owner candidate, but the actual transfer of
ownership occurs only when the candidate explicitly accepts the ownership.

Recommendation

Consider using the 2-step process for transferring ownership, e.g. using the Ownable2Step
contract from the OpenZeppelin library.

Status

This issue has been acknowledged by the team.

9

https://docs.openzeppelin.com/contracts/4.x/api/access#Ownable2Step

4. Floating compiler version

Severity: Informational Category: Configuration

Target:
- JungleToken.sol

Description

pragma solidity ^0.8.18;

The JungleToken contract uses a floating Solidity compiler version, ^0.8.18.

However, we discourage this practice. It’s best to deploy contracts with the same compiler
version and flags that they have been thoroughly tested with. Locking the compiler version
helps to prevent contracts from being accidentally deployed using an outdated compiler
version, which could introduce bugs that have a negative impact on the system..

Recommendation

It is recommended to use a locked Solidity compiler version.

For example:
pragma solidity 0.8.18;

Status

This issue has been acknowledged by the team.

10

Appendix
Appendix 1 - Files in Scope
This audit covered the following file from address

0x4C45bbEc2fF7810ef4a77ad7BD4757C446Fe4155:

File SHA-1 hash

JungleToken.sol 4b9a572847a9b710fac1a658817e550afd4dab5e

11

https://etherscan.io/address/0x4c45bbec2ff7810ef4a77ad7bd4757c446fe4155#code

