

Overview
Project Summary

● Name: META Apes

● Platform: BNB Smart Chain

● Language: Solidity

● Contract address: 0x734548a9e43d2D564600b1B2ed5bE9C2b911c6aB

● Audit Range: See Appendix - 1

Project Dashboard

Application Summary

Name META Apes

Version v2

Type Solidity

Dates Feb 6 2023, Apr 14 2023

Logs Feb 6 2023, Apr 14 2023

Vulnerability Summary

Total High-Severity issues 0

Total Medium-Severity issues 1

Total Low-Severity issues 1

Total informational issues 7

Total 9

Contact
E-mail: support@salusec.io

1

Risk Level Description

High Risk

The issue puts a large number of users’ sensitive

information at risk, or is reasonably likely to lead to

catastrophic impact for clients’ reputations or serious

financial implications for clients and users.

Medium Risk

The issue puts a subset of users’ sensitive

information at risk, would be detrimental to the client’s

reputation if exploited, or is reasonably likely to lead

to a moderate financial impact.

Low Risk

The risk is relatively small and could not be exploited

on a recurring basis, or is a risk that the client has

indicated is low impact in view of the client’s business

circumstances.

Informational
The issue does not pose an immediate risk, but is

relevant to security best practices or defense in

depth.

2

Content

Introduction 4
1.1 About SALUS 4
1.2 Audit Breakdown 4
1.3 Disclaimer 4

Findings 5
2.1 Summary of Findings 5
2.2 Notable Findings 6

1. Centralization risk 6
2. Incompatible with fee-on-transfer tokens and rebase token 7

2.3 Informational Findings 8
3. Mismatch between comment and implementation 8
4. Can use OpenZeppelin’s Ownable2Step to replace Ownable 9
5. Using outdated OpenZeppelin library version 10
6. Floating compiler version 11
7. Missing events for critical functions 12
8. Indexed modifier can be added to event parameters 13
9. Gas optimization suggestions 14

Appendix 15
Appendix 1 - Files in Scope 15

3

Introduction

1.1 About SALUS
At Salus Security, we are in the business of trust.

We are dedicated to tackling the toughest security challenges facing the industry today. By
building foundational trust in technology and infrastructure through security, we help clients
to lead their respective industries and unlock their full Web3 potential.

Our team of security experts employ industry-leading proof-of-concept (PoC) methodology
for demonstrating smart contract vulnerabilities, coupled with advanced red teaming
capabilities and a stereoscopic vulnerability detection service, to deliver comprehensive
security assessments that allow clients to stay ahead of the curve.

In addition to smart contract audits and red teaming, our Rapid Detection Service for smart
contracts aims to make security accessible to all. This high calibre, yet cost-efficient, security
tool has been designed to support a wide range of business needs including investment due
diligence, security and code quality assessments, and code optimisation.

We are reachable on Telegram (https://t.me/salusec), Twitter (https://twitter.com/salus_sec),
or Email (support@salusec.io).

1.2 Audit Breakdown
The objective was to evaluate the repository for security-related issues, code quality, and
adherence to specifications and best practices. Possible issues we looked for included (but
are not limited to):

● Risky external calls
● Integer overflow/underflow
● Transaction-ordering dependence
● Timestamp dependence
● Access control
● Call stack limits and mishandled exceptions
● Number rounding errors
● Centralization of power
● Logical oversights and denial of service
● Business logic specification
● Code clones, functionality duplication

1.3 Disclaimer
Note that this security audit is not designed to replace functional tests required before any
software release and does not give any warranties on finding all possible security issues with
the given smart contract(s) or blockchain software, i.e., the evaluation result does not
guarantee the nonexistence of any further findings of security issues.

4

https://t.me/salusec
https://twitter.com/salus_sec

Findings
2.1 Summary of Findings

ID Title Severity Category Status

1 Centralization risk Medium Centralization Resolved

2 Incompatible with fee-on-transfer tokens and

rebase token

Low Business Logic Acknowledged

3 Mismatch between comment and implementation Informational Business Logic Acknowledged

4 Can use OpenZeppelin’s Ownable2Step to

replace Ownable

Informational Authentication Acknowledged

5 Using outdated OpenZeppelin library version Informational Configuration Acknowledged

6 Floating compiler version Informational Configuration Acknowledged

7 Missing events for critical functions Informational Auditing and
Logging

Acknowledged

8 Indexed modifier can be added to event

parameters

Informational Auditing and
Logging

Acknowledged

9 Gas optimization suggestions Informational Gas optimization Acknowledged

5

2.2 Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

1. Centralization risk

Severity: Medium Category: Centralization

Target:
- contracts\pegged-bridge\tokens\MultiBridgeToken.sol
- contracts\pegged-bridge\tokens\MintSwapCanonicalToken.sol

Description

contracts\pegged-bridge\tokens\MultiBridgeToken.sol:L106-L110
function updateBridgeSupplyCap(address _bridge, uint256 _cap) external onlyOwner {

// cap == 0 means revoking bridge role

bridges[_bridge].cap = _cap;

emit BridgeSupplyCapUpdated(_bridge, _cap);

}

contracts\pegged-bridge\tokens\MintSwapCanonicalToken.sol:L65-L68
function setBridgeTokenSwapCap(address _bridgeToken, uint256 _swapCap) external

onlyOwner {

swapSupplies[_bridgeToken].cap = _swapCap;

emit TokenSwapCapUpdated(_bridgeToken, _swapCap);

}

The updateBridgeSupplyCap function in the contract is restricted to be called only by the
Owner role. If the owner’s private key is compromised and obtained by a malicious person,
then he or she can set a large cap value for his own address by calling this function, and
then call the mint function to complete a large amount of token issuance.

Moreover, the owner role can also call the setBridgeTokenSwapCap function to change the
value of swapSupplies[_bridgeToken].cap, if the owner’s private key is compromised
and obtained by a malicious person who then call this function to change the cap to 0, other
users will not be able to swap tokens by using the swapBridgeForCanonical and
swapCanonicalForBridge functions.

Recommendation

It is recommended to use a Multisig wallet for the owner address.

Status

This issue has been resolved by the team using a Multisig wallet for the owner address.

6

2. Incompatible with fee-on-transfer tokens and rebase token

Severity: Low Category: Business Logic

Target:
- contracts\pegged-bridge\tokens\MintSwapCanonicalToken.sol

Description

contracts\pegged-bridge\tokens\MintSwapCanonicalToken.sol:L25-L57
/**
* @notice msg.sender has bridge token and wants to get canonical token.
* @param _bridgeToken The intermediary token address for a particular bridge.
* @param _amount The amount.
*/
function swapBridgeForCanonical(address _bridgeToken, uint256 _amount) external returns (uint256) {

Supply storage supply = swapSupplies[_bridgeToken];
require(supply.cap > 0, "invalid bridge token");
require(supply.total + _amount < supply.cap, "exceed swap cap");

supply.total += _amount;
_mint(msg.sender, _amount);

// move bridge token from msg.sender to canonical token _amount
IERC20(_bridgeToken).safeTransferFrom(msg.sender, address(this), _amount);
return _amount;

}

/**
* @notice msg.sender has canonical token and wants to get bridge token (eg. for cross chain burn).
* @param _bridgeToken The intermediary token address for a particular bridge.
* @param _amount The amount.
*/
function swapCanonicalForBridge(address _bridgeToken, uint256 _amount) external returns (uint256) {

Supply storage supply = swapSupplies[_bridgeToken];
require(supply.cap > 0, "invalid bridge token");

supply.total -= _amount;
_burn(msg.sender, _amount);

IERC20(_bridgeToken).safeTransfer(msg.sender, _amount);
return _amount;

}

The correct functioning of the swapCanonicalForBridge and swapBridgeForCanonical
functions in the contract depends on the corresponding _bridgeToken being a standard
ERC20 token. If the token is a fee-on-transfer token or a rebase token, the user may not be
able to swap it back using the swapCanonicalForBridge function after swapping the
MultiBridgeToken using the swapCanonicalForBridge function because the number of
_bridgeTokens in the contract may be less than the expected value.

Recommendation

We recommend making sure _bridgeToken is a standard ERC20 token.

Status

This issue has been acknowledged by the team.

7

2.3 Informational Findings

3. Mismatch between comment and implementation

Severity: Informational Category: Business Logic

Target:
- contracts\pegged-bridge\tokens\MultiBridgeToken.sol

Description

contracts\pegged-bridge\tokens\MultiBridgeToken.sol:L64-L92
/**

* @notice Burns tokens from an address. Decreases total amount minted if called by a bridge.

* See {_burnFrom}.

* @param _from The address to burn tokens from.

* @param _amount The amount to burn.

*/

function burnFrom(address _from, uint256 _amount) external returns (bool) {

return _burnFrom(_from, _amount);

}

/**

* @dev Burns tokens from an address, deducting from the caller's allowance.

* Decreases total amount minted if called by a bridge.

* @param _from The address to burn tokens from.

* @param _amount The amount to burn.

*/

function _burnFrom(address _from, uint256 _amount) internal returns (bool) {

Supply storage b = bridges[msg.sender];

if (b.cap > 0 || b.total > 0) {

// set cap to 1 would effectively disable a deprecated bridge's ability to burn

require(b.total >= _amount, "exceeds bridge minted amount");

unchecked {

b.total -= _amount;

}

}

_spendAllowance(_from, msg.sender, _amount);

_burn(_from, _amount);

return true;

}

The code comment states that the burnFrom function 'Decreases the total amount

minted if called by a bridge', but according to its code implementation, the decrease
can be made when burnFrom() is called by any user approved address.

Recommendation

It is recommended to fix the comment so that it matches with the implementation.

Status

This issue has been acknowledged by the team.

8

4. Can use OpenZeppelin’s Ownable2Step to replace Ownable

Severity: Informational Category: Authentication

Target:
- contracts\safeguard\Ownable.sol

Description

The project uses a custom Ownable.sol contract. It is recommended to use OpenZeppelin’s

Ownable contract as it is well tested and optimized.

There is also an Ownable2Step.sol contract in the OpenZeppelin library that is designed for
two-step ownership transfer which is more secure than the single-step ownership transfer
used by Ownable.sol.

Recommendation

Consider use OpenZeppelin's Ownable2Step.sol instead of Ownable.sol.

Status

This issue has been acknowledged by the team.

9

https://docs.openzeppelin.com/contracts/4.x/api/access#Ownable2Step
https://docs.openzeppelin.com/contracts/4.x/api/access#Ownable2Step

5. Using outdated OpenZeppelin library version

Severity: Informational Category: Configuration

Target:
- contracts\pegged-bridge\tokens\MultiBridgeToken.sol
- contracts\pegged-bridge\tokens\MintSwapCanonicalToken.sol

Description

The contract uses version 4.5.0 for its OpenZeppelin's dependencies, but this version has a
High severity vulnerability related to ECDSA - Reference. Even though the code is not
exploitable in its current state, it is best to upgrade the OpenZeppelin library dependency to
the latest safe version to get all security patches, features and gas optimisations.

Recommendation

Consider using the latest safe version of the OpenZeppelin library.

Status

This issue has been acknowledged by the team.

10

https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories/GHSA-4h98-2769-gh6h

6. Floating compiler version

Severity: Informational Category: Configuration

Target:
- all

Description

pragma solidity ^0.8.9;

The META Apes contracts use a floating compiler version ^0.8.9.

Using a floating pragma ^0.8.9 statement is discouraged, as code may compile to different
bytecodes with different compiler versions. Use a locked pragma statement to get a
deterministic bytecode. Also use the latest Solidity version to get all the compiler features,
bug fixes and optimizations.

Recommendation

It is recommended to use a locked Solidity version throughout the project. It is also
recommended to use the most stable and up-to-date version.

Status
This issue has been acknowledged by the team.

11

7. Missing events for critical functions

Severity: Informational Category: Auditing and Logging

Target:
- contracts\pegged-bridge\tokens\MultiBridgeToken.sol
- contracts\pegged-bridge\tokens\MintSwapCanonicalToken.sol

Description

contracts\pegged-bridge\tokens\MintSwapCanonicalToken.sol:L26-L57
/**
* @notice msg.sender has bridge token and wants to get canonical token.
* @param _bridgeToken The intermediary token address for a particular bridge.
* @param _amount The amount.
*/
function swapBridgeForCanonical(address _bridgeToken, uint256 _amount) external returns (uint256) {

Supply storage supply = swapSupplies[_bridgeToken];
require(supply.cap > 0, "invalid bridge token");
require(supply.total + _amount < supply.cap, "exceed swap cap");

supply.total += _amount;
_mint(msg.sender, _amount);

// move bridge token from msg.sender to canonical token _amount
IERC20(_bridgeToken).safeTransferFrom(msg.sender, address(this), _amount);
return _amount;

}

/**
* @notice msg.sender has canonical token and wants to get bridge token (eg. for cross chain burn).
* @param _bridgeToken The intermediary token address for a particular bridge.
* @param _amount The amount.
*/
function swapCanonicalForBridge(address _bridgeToken, uint256 _amount) external returns (uint256) {

Supply storage supply = swapSupplies[_bridgeToken];
require(supply.cap > 0, "invalid bridge token");

supply.total -= _amount;
_burn(msg.sender, _amount);

IERC20(_bridgeToken).safeTransfer(msg.sender, _amount);
return _amount;

}

swapCanonicalForBridge function and swapBridgeForCanonical function are important
functions that miss event emission. Relevant events should be added to ensure that
changes in such functions can be tracked.

Recommendation

Consider adding event emission to swapCanonicalForBridge function and
swapBridgeForCanonical function.

Status

This issue has been acknowledged by the team.

12

8. Indexed modifier can be added to event parameters

Severity: Informational Category: Auditing and Logging

Target:
- contracts\pegged-bridge\tokens\MultiBridgeToken.sol
- contracts\pegged-bridge\tokens\MintSwapCanonicalToken.sol

Description

contracts\pegged-bridge\tokens\MultiBridgeToken.sol:L20

event BridgeSupplyCapUpdated(address bridge, uint256 supplyCap);

contracts\pegged-bridge\tokens\MintSwapCanonicalToken.sol:L17
event TokenSwapCapUpdated(address token, uint256 cap);

Indexed fields in events make it easy for the off-chain indexer to track the fields. If there are
fewer than three fields, all of the fields should be indexed. But also note that each indexed
field costs extra gas.

Recommendation

We recommend that you add indexed modifiers to fields in event TokenSwapCapUpdated
and event BridgeSupplyCapUpdated.

Status

This issue has been acknowledged by the team.

13

9. Gas optimization suggestions

Severity: Informational Category: gas optimization

Target:
- contracts\pegged-bridge\tokens\MultiBridgeToken.sol

Description

contracts\pegged-bridge\tokens\MultiBridgeToken.sol:L37

require(b.cap > 0, "invalid caller");

The contract uses the 'require' statement for a conditional check, but starting from Solidity
v0.8.4, there is a convenient and gas-efficient way to explain to users why an operation
failed through the use of custom errors. Using custom errors can reduce both gas usage
and bytecode size.

contracts\pegged-bridge\tokens\MultiBridgeToken.sol:L97

function decimals() public view virtual override returns (uint8)

The decimals() function is not called inside the contract, thus, the visibility can be changed
to external to save gas.

Recommendation

Consider using custom errors to replace the revert messages.

Consider changing the visibility of the decimals() function to external.

Status

This issue has been acknowledged by the team.

14

Appendix
Appendix 1 - Files in Scope
This audit covered the following files:

File SHA-1 hash

MintSwapCanonicalToken.sol 465f20faa94e50ef745c39b693a85d7ebf350f00

MultiBridgeToken.sol d8c8ecb01dd46651f0500d872fbc188b8be6e522

Ownable.sol 09d272559cb58aa22cd74780b9465ffcd6d4693d

15

