


Overview

Project Summary

● Name: MetaMerge - MetaMergeMana token
● Version: commit 2c6992b
● Platform: EVM-compatible Chains
● Language: Solidity
● Repository: https://github.com/MetaMergeXYZ/Mana
● Audit Scope: See Appendix - 1

Project Dashboard
Application Summary

Name MetaMerge - MetaMergeMana token

Version v2

Type Solidity

Dates May 11 2023

Logs May 10 2023; May 11 2023

Vulnerability Summary

Total High-Severity issues 0

Total Medium-Severity issues 0

Total Low-Severity issues 1

Total informational issues 3

Total 4

Contact
E-mail: support@salusec.io

1

https://github.com/MetaMergeXYZ/Mana/commit/2c6992b03a172e9ee7a3736dbf9844aa0cc0450b


Risk Level Description

High Risk

The issue puts a large number of users’ sensitive

information at risk, or is reasonably likely to lead to

catastrophic impact for clients’ reputations or serious

financial implications for clients and users.

Medium Risk

The issue puts a subset of users’ sensitive

information at risk, would be detrimental to the client’s

reputation if exploited, or is reasonably likely to lead

to a moderate financial impact.

Low Risk

The risk is relatively small and could not be exploited

on a recurring basis, or is a risk that the client has

indicated is low impact in view of the client’s business

circumstances.

Informational
The issue does not pose an immediate risk, but is

relevant to security best practices or defense in

depth.

2



Content

Introduction 4
1.1 About SALUS 4
1.2 Audit Breakdown 4
1.3 Disclaimer 4

Findings 5
2.1 Summary of Findings 5
2.2 Notable Findings 6

1. Centralization risk 6
2.3 Informational Findings 7

2. Functions visibility 7
3. Missing address validation 8
4. Floating compiler version 9

Appendix 10
Appendix 1 - Files in Scope 10

3



Introduction

1.1 About SALUS
At Salus Security, we are in the business of trust.

We are dedicated to tackling the toughest security challenges facing the industry today. By
building foundational trust in technology and infrastructure through security, we help clients
to lead their respective industries and unlock their full Web3 potential.

Our team of security experts employ industry-leading proof-of-concept (PoC) methodology
for demonstrating smart contract vulnerabilities, coupled with advanced red teaming
capabilities and a stereoscopic vulnerability detection service, to deliver comprehensive
security assessments that allow clients to stay ahead of the curve.

In addition to smart contract audits and red teaming, our Rapid Detection Service for smart
contracts aims to make security accessible to all. This high calibre, yet cost-efficient, security
tool has been designed to support a wide range of business needs including investment due
diligence, security and code quality assessments, and code optimisation.

We are reachable on Telegram (https://t.me/salusec), Twitter (https://twitter.com/salus_sec),
or Email (support@salusec.io).

1.2 Audit Breakdown
The objective was to evaluate the repository for security-related issues, code quality, and
adherence to specifications and best practices. Possible issues we looked for included (but
are not limited to):

● Risky external calls
● Integer overflow/underflow
● Transaction-ordering dependence
● Timestamp dependence
● Access control
● Call stack limits and mishandled exceptions
● Number rounding errors
● Centralization of power
● Logical oversights and denial of service
● Business logic specification
● Code clones, functionality duplication

1.3 Disclaimer
Note that this security audit is not designed to replace functional tests required before any
software release and does not give any warranties on finding all possible security issues with
the given smart contract(s) or blockchain software, i.e., the evaluation result does not
guarantee the nonexistence of any further findings of security issues.

4



Findings
2.1 Summary of Findings

ID Title Severity Category Status

1 Centralization risk Low Centralization Acknowledged

2 Functions visibility Informational Gas inefficiencies Acknowledged

3 Missing address validation Informational Validation Acknowledged

4 Floating compiler version Informational Configuration Acknowledged

5



2.2 Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

1. Centralization risk

Severity: Low Category: Centralization

Target:
- src/Mana/MetaMergeMana.sol

Description

There are three privileged roles in the MetaMergeMana contract:

- the MINTER_ROLE can mint tokens to an address using the mint() function.
- the PAUSER_ROLE can pause and unpause the contract. When paused, token

transfers is disabled, which also disables token minting and burning.
- the DEFAULT_ADMIN_ROLE has the permission to grant and revoke the above

roles.

If these privileged accounts are plain EOA accounts, this poses a risk to the users. If any of
the private keys is compromised, an attacker could exploit the privileged operations to attack
the project.

Recommendation

We recommend transferring privileged accounts to multi-signature accounts with timelock
governors for enhanced security. This ensures that no single person has full control over the
accounts and that any changes must be authorized by multiple parties.

Status

This issue has been acknowledged by the team.

6



2.3 Informational Findings

2. Functions visibility

Severity: Informational Category: Gas inefficiencies

Target:
- src/Mana/MetaMergeMana.sol

Description

For certain functions that are only called from outside the smart contract, using function
visibility public can make the gas costs greater than using the visibility external. This is
because with public functions, the EVM copies inputs (especially dynamic-sized arrays) into
memory, while it reads from calldata if the function is external, which is cheaper.

In the MetaMergeMana contract, the mint(), pause(), and unpause() functions have public
visibility whilst only being called externally.

Recommendation

Consider changing the visibility of public functions to external if they are only accessed
externally.

Status

This issue has been acknowledged by the team.

7

https://github.com/MetaMergeXYZ/Mana/blob/2c6992b03a172e9ee7a3736dbf9844aa0cc0450b/src/Mana/MetaMergeMana.sol#L37
https://github.com/MetaMergeXYZ/Mana/blob/2c6992b03a172e9ee7a3736dbf9844aa0cc0450b/src/Mana/MetaMergeMana.sol#L29
https://github.com/MetaMergeXYZ/Mana/blob/2c6992b03a172e9ee7a3736dbf9844aa0cc0450b/src/Mana/MetaMergeMana.sol#L33


3. Missing address validation

Severity: Informational Category: Validation

Target:
- src/Mana/MetaMergeMana.sol

Description

To ensure security, it is best practice to check input addresses against zero-address,
otherwise contract functionality may become inaccessible.

However, MetaMergeMana’s constructor function lacks such a check for the admin_
parameter. If zero-address is mistakenly passed in as admin_, the
DEFAULT_ADMIN_ROLE, MINTER_ROLE, and PAUSER_ROLE cannot be set, rendering
the contract unusable.

Recommendation

Consider implementing a zero-address check for admin_ in the constructor.

Example:
require(admin_ != address(0), "MetaMergeMana: zero address");

Status

This issue has been acknowledged by the team.

8

https://github.com/MetaMergeXYZ/Mana/blob/2c6992b03a172e9ee7a3736dbf9844aa0cc0450b/src/Mana/MetaMergeMana.sol#LL24C20-L24C20


4. Floating compiler version

Severity: Informational Category: Configuration

Target:
- src/Mana/MetaMergeMana.sol

Description

pragma solidity ^0.8.18;

The MetaMergeMana contract uses a floating Solidity compiler version, ^0.8.18.

It’s best to deploy contracts with the same compiler version and flags that they have been
thoroughly tested with. Locking the compiler version helps to prevent contracts from being
accidentally deployed using an outdated compiler version, which could introduce bugs that
have a negative impact on the system.

Recommendation

It is recommended to use a locked Solidity compiler version.

Example:
pragma solidity 0.8.18;

Status

This issue has been acknowledged by the team.

9



Appendix
Appendix 1 - Files in Scope
This audit covered the following file in commit 2c6992b:

File SHA-1 hash

src/Mana/MetaMergeMana.sol d1378d3a2f9c59778570849d847618b220c9f0c2

10

https://github.com/MetaMergeXYZ/Mana/commit/2c6992b03a172e9ee7a3736dbf9844aa0cc0450b

