

Overview

Project Summary

● Name: Shibnobi
● Version: v2
● Platform: Ethereum, BSC
● Language: Solidity
● Audit Range: Shibnobi_v2.sol

Project Dashboard

Application Summary

Name Shibnobi

Version v2

Type Solidity

Dates Nov 04 2022

Logs Nov 03 2022, Nov 04 2022

Vulnerability Summary

Total High-Severity issues 0

Total Medium-Severity issues 0

Total Low-Severity issues 0

Total informational issues 5

Total 5

Contact
E-mail: support@salusec.io

1

Risk Level Description

High Risk

The issue puts a large number of users’ sensitive

information at risk, or is reasonably likely to lead to

catastrophic impact for clients’ reputations or serious

financial implications for clients and users.

Medium Risk

The issue puts a subset of users’ sensitive

information at risk, would be detrimental to the client’s

reputation if exploited, or is reasonably likely to lead

to a moderate financial impact.

Low Risk

The risk is relatively small and could not be exploited

on a recurring basis, or is a risk that the client has

indicated is low impact in view of the client’s business

circumstances.

Informational
The issue does not pose an immediate risk, but is

relevant to security best practices or defense in

depth.

2

Content

Introduction 4
1.1 About SALUS 4
1.2 Audit Breakdown 4
1.3 Disclaimer 4

Findings 5
2.1 Summary of Findings 5
2.2 Notable Findings 6
2.3 Informational Findings 7

1. Questionable token acquisition method 7
2. Uncoordinated variable modification method 8
3. Floating compiler version 9
4. Redundant functions and variables 10
5. Optimization 13

3

Introduction

1.1 About SALUS
At Salus Security, we are in the business of trust.

We are dedicated to tackling the toughest security challenges facing the industry today. By
building foundational trust in technology and infrastructure through security, we help clients
to lead their respective industries and unlock their full Web3 potential.

Our team of security experts employ industry-leading proof-of-concept (PoC) methodology
for demonstrating smart contract vulnerabilities, coupled with advanced red teaming
capabilities and a stereoscopic vulnerability detection service, to deliver comprehensive
security assessments that allow clients to stay ahead of the curve.

In addition to smart contract audits and red teaming, our Rapid Detection Service for smart
contracts aims to make security accessible to all. This high calibre, yet cost-efficient, security
tool has been designed to support a wide range of business needs including investment due
diligence, security and code quality assessments, and code optimisation.

We are reachable on Telegram (https://t.me/salusec), Twitter (https://twitter.com/salus_sec),
or Email (support@salusec.io).

1.2 Audit Breakdown
The objective was to evaluate the repository for security-related issues, code quality, and
adherence to specifications and best practices. Possible issues we looked for included (but
are not limited to):

● Risky external calls
● Integer overflow/underflow
● Transaction-ordering dependence
● Timestamp dependence
● Access control
● Call stack limits and mishandled exceptions
● Number rounding errors
● Centralization of power
● Logical oversights and denial of service
● Business logic specification
● Code clones, functionality duplication

1.3 Disclaimer
Note that this security audit is not designed to replace functional tests required before any
software release and does not give any warranties on finding all possible security issues with
the given smart contract(s) or blockchain software, i.e., the evaluation result does not
guarantee the nonexistence of any further findings of security issues.

4

Findings
2.1 Summary of Findings

ID Title Severity Category Status

1 Questionable token acquisition method Informational Coding Practice Acknowledged

2 Uncoordinated variable modification method Informational Coding Practice Resolved

3 Floating compiler version Informational Coding Practice Acknowledged

4 Redundant functions and variables Informational Coding Practice Resolved

5 Optimization Informational Coding Practice Resolved

5

2.2 Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

No significant issues are found.

6

2.3 Informational Findings

1. Questionable token acquisition method

Severity: Informational Category: Coding Practice

Target:
- Shibnobi_v2.sol

Description

function checkLiquidity() internal {

(uint256 r1, uint256 r2,) = uniswapV2Pair(uniswapPair).getReserves();

lpTokens = balanceOf(uniswapPair);

hasLiquidity = r1 > 0 && r2 > 0 ? true : false;

}

It is questionable of how the “Shibnobi V2” token is acquired from the “uniswapV2Pair”. The
function “(contractTokenBalance >= lpTokens * minLpBeforeSwapping / 1000)” indicates that
the “lpTokens” is derived from “uniswapPair.getReserves._reserve0”. However, if other
clients transfer “ShibnobiV2 token” to “uniswapPair”, it will influence the value of “lpTokens =
balanceOf(uniswapPair)”.

Recommendation

Change to:

function checkLiquidity() internal {

(uint256 r1, uint256 r2,) = uniswapV2Pair(uniswapPair).getReserves();

lpTokens = r1;

hasLiquidity = r1 > 0 && r2 > 0 ? true : false;

}

7

2. Uncoordinated variable modification method

Severity: Informational Category: Coding Practice

Target:
- Shibnobi_v2.sol

Description

function setBridgeAddress(address a) external onlyOwner {

require(a != address(0), "Can't set 0");

bridgeAddress = a;

}.

function migrateBridge(address newAddress) external onlyOwner {

require(newAddress != address(0) && !automatedMarketMakerPairs[newAddress],

"Can't set this address");

bridgeAddress = newAddress;

isExcludedFromFee[newAddress] = true;

_limits[newAddress].isExcluded = true;

}

There are two different functions that can modify the value of “bridgeAddress” but they have
been implemented in two different ways.

Recommendation

Consider removing the “setBridgeAddress(address a)” function and only keep the
“migrateBridge(address newAddress)” function.

8

3. Floating compiler version

Severity: Informational Category: Coding Practice

Target:
- Shibnobi_v2.sol

Description

pragma solidity ^0.8.9

Recommendation

It is recommended to use the up-to-date stable compiler version.

9

4. Redundant functions and variables

Severity: Informational Category: Coding Practice

Target:
- Shibnobi_v2.sol

Description

uint256 private _burnFee;

uint256 private _previousBurnFee;

uint256 private _liquidityFee;

uint256 private _previousLiquidityFee;

uint256 private _marketingFee;

uint256 private _previousMarketingFee;

uint256 private _stakingFee;

uint256 private _previousStakingFee;

function removeAllFee() private {

if (

_burnFee == 0 &&

_liquidityFee == 0 &&

_marketingFee == 0 &&

_stakingFee == 0

) return;

_previousBurnFee = _burnFee;

_previousLiquidityFee = _liquidityFee;

_previousMarketingFee = _marketingFee;

_previousStakingFee = _stakingFee;

_burnFee = 0;

_liquidityFee = 0;

_marketingFee = 0;

_stakingFee = 0;

}

function _transfer(

address from,

address to,

uint256 amount

) internal override {

console.log("ShibnobiV2 _transfer call");

if (!tradingActive) {

console.log("tradingActive false");

require(

isExcludedFromFee[from] || isExcludedFromFee[to],

"Trading is not active yet."

);

}

checkLiquidity();

if (hasLiquidity && !inSwapAndLiquify && automatedMarketMakerPairs[to])

{

uint256 contractTokenBalance = balanceOf(address(this));

if (contractTokenBalance >= lpTokens * minLpBeforeSwapping / 1000)

takeFee(contractTokenBalance);

10

}

removeAllFee();

if (!isExcludedFromFee[from] && !isExcludedFromFee[to]) {

if (automatedMarketMakerPairs[from]) {

_burnFee = (amount * buyBurnFee) / feeDenominator;

_liquidityFee = (amount * buyLiquidityFee) / feeDenominator;

_marketingFee = (amount * buyMarketingFee) / feeDenominator;

_stakingFee = (amount * buyStakingFee) / feeDenominator;

}

else if (automatedMarketMakerPairs[to]) {

_burnFee = (amount * sellBurnFee) / feeDenominator;

_liquidityFee = (amount * sellLiquidityFee) / feeDenominator;

_marketingFee = (amount * sellMarketingFee) / feeDenominator;

_stakingFee = (amount * sellStakingFee) / feeDenominator;

} else {

_burnFee = (amount * transferBurnFee) / feeDenominator;

_liquidityFee =

(amount * transferLiquidityFee) /

feeDenominator;

_marketingFee =

(amount * transferMarketingFee) /

feeDenominator;

_stakingFee = (amount * transferStakingFee) / feeDenominator;

}

_handleLimited(

from,

to,

amount - _burnFee - _liquidityFee - _marketingFee - _stakingFee

);

}

uint256 _transferAmount = amount -

_burnFee -

_liquidityFee -

_marketingFee -

_stakingFee;

super._transfer(from, to, _transferAmount);

uint256 _feeTotal = _burnFee +

_liquidityFee +

_marketingFee +

_stakingFee;

if (_feeTotal > 0) {

super._transfer(from, address(this), _feeTotal);

_liquidityTokensToSwap += _liquidityFee;

_marketingFeeTokensToSwap += _marketingFee;

_burnFeeTokens += _burnFee;

_stakingFeeTokens += _stakingFee;

}

restoreAllFee();

}

function restoreAllFee() private {

_burnFee = _previousBurnFee;

_liquidityFee = _previousLiquidityFee;

_marketingFee = _previousMarketingFee;

_stakingFee = _previousStakingFee;

}

11

Recommendation

It is recommended to remove the Variables: “_burnFee, _liquidityFee, _marketingFee,
_stakingFee” and functions “function restoreAllFee() private” and “function removeAllFee()
private” The parts that are to be removed are labeled in red below. These are also for gas
optimization purposes.

12

5. Optimization

Severity: Informational Category: Coding Practice

Target:
- Shibnobi_v2.sol

Description

ShibnobiV2.swapTokensForETH._approve(address(this), address(uniswapRouter),

tokenAmount);

ShibnobiV2.addLiquidity._approve(address(this), address(uniswapRouter),

tokenAmount);

The approved procedure for “uniswapRouter” has been carried out redundantly twice in both
“swapTokensForETH(uint256)” and “addLiquidity(uint256, uint256)” functions.

Recommendation

It is recommended to remove the below two original functions and add the solution function
into the constructor.

_approve(address(this), address(uniswapRouter), type(uint256).max);

13

