

Overview

Project Summary

● Name: Shorter Finance
● Language: Solidity
● Repository: https://github.com/IPILabs/shorter-v1
● Audit Range: contracts/ShorterBone.sol; contracts/v1/ PoolGuardianImpl.sol;

contracts/v1/TradingHubImpl.sol; contracts/v1/ AuctionHallImpl.sol;
contracts/v1/VaultButlerImpl.sol; contracts/v1/ StrPoolProviderImpl.sol;
contracts/v1/StrPoolTraderImpl.sol; contracts/ v1/TreasuryImpl.sol

Project Dashboard

Application Summary

Name Shorter Finance

Version v3

Type Solidity

Dates Oct 27 2022

Logs Oct 12 2022; Oct 25 2022; Oct 27 2022

Vulnerability Summary

Total High-Severity issues 2

Total Medium-Severity issues 0

Total Low-Severity issues 0

Total informational issues 12

Total 14

Contact
E-mail: support@salusec.io

1

https://github.com/IPILabs/shorter-v1

Risk Level Description

High Risk

The issue puts a large number of users’ sensitive

information at risk, or is reasonably likely to lead to

catastrophic impact for clients’ reputations or serious

financial implications for clients and users.

Medium Risk

The issue puts a subset of users’ sensitive

information at risk, would be detrimental to the client’s

reputation if exploited, or is reasonably likely to lead

to a moderate financial impact.

Low Risk

The risk is relatively small and could not be exploited

on a recurring basis, or is a risk that the client has

indicated is low impact in view of the client’s business

circumstances.

Informational
The issue does not pose an immediate risk, but is

relevant to security best practices or defense in

depth.

2

Content

Introduction 4
1.1 About SALUS 4
1.2 Audit Breakdown 4
1.3 Disclaimer 4

Findings 5
2.1 Summary of Findings 5
2.2 Notable Findings 6

1. Incorrect use of variable 6
2. Incorrect function call 7

2.3 Informational Findings 8
3. Pragma usage 8
4. Variable declaration 8
5. Contract clarification 9
6. Vulnerable function call 9
7. Loop Import 10
8. Address lacks zero-check 11
9. Redundant import 12
10. Revert function clarification 12
11. Unchecked return value 13
12. Centralization of power 13
13. Missing event parameter 14
14. Optimization 15

3

Introduction

1.1 About SALUS
At Salus Security, we are in the business of trust.

We are dedicated to tackling the toughest security challenges facing the industry today. By
building foundational trust in technology and infrastructure through security, we help clients
to lead their respective industries and unlock their full Web3 potential.

Our team of security experts employ industry-leading proof-of-concept (PoC) methodology
for demonstrating smart contract vulnerabilities, coupled with advanced red teaming
capabilities and a stereoscopic vulnerability detection service, to deliver comprehensive
security assessments that allow clients to stay ahead of the curve.

In addition to smart contract audits and red teaming, our Rapid Detection Service for smart
contracts aims to make security accessible to all. This high calibre, yet cost-efficient, security
tool has been designed to support a wide range of business needs including investment due
diligence, security and code quality assessments, and code optimisation.

We are reachable on Telegram (https://t.me/salusec), Twitter (https://twitter.com/salus_sec),
or Email (support@salusec.io).

1.2 Audit Breakdown
The objective was to evaluate the repository for security-related issues, code quality, and
adherence to specifications and best practices. Possible issues we looked for included (but
are not limited to):

● Risky external calls
● Integer overflow/underflow
● Transaction-ordering dependence
● Timestamp dependence
● Access control
● Call stack limits and mishandled exceptions
● Number rounding errors
● Centralization of power
● Logical oversights and denial of service
● Business logic specification
● Code clones, functionality duplication

1.3 Disclaimer
Note that this security audit is not designed to replace functional tests required before any
software release and does not give any warranties on finding all possible security issues with
the given smart contract(s) or blockchain software, i.e., the evaluation result does not
guarantee the nonexistence of any further findings of security issues.

4

Findings
2.1 Summary of Findings

ID Title Severity Category Status

1 Incorrect use of variable High Coding Practice Resolved

2 Incorrect function call High Coding Practice Resolved

3 Pragma usage Informational Coding Practice Acknowledged

4 Variable declaration Informational Coding Practice Acknowledged

5 Contract clarification Informational Coding Practice Resolved

6 Vulnerable function call Informational Coding Practice Acknowledged

7 Loop Import Informational Coding Practice Resolved

8 Address lacks zero-check Informational Coding Practice Resolved

9 Redundant import Informational Coding Practice Resolved

10 Revert function clarification Informational Coding Practice Resolved

11 Unchecked return value Informational Coding Practice Acknowledged

12 Centralization of power Informational Coding Practice Resolved

13 Missing event parameter Informational Coding Practice Resolved

14 Optimization Informational Coding Practice Partially Resolved

5

2.2 Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

1. Incorrect use of variable

Severity: High Category: Coding Practice

Target:
- StrPoolProviderImpl.sol

Description

Incorrect use of variable, The variable “amount <= 100” should be “percent <= 100”

StrPoolProviderImpl.getWithdrawAmount(uint256,uint256).

require(percent > 0 && amount <= 100, "StrPool: Invalid withdraw

percentage");

6

2. Incorrect function call

Severity: High Category: Coding Practice

Target:
- StrPoolProviderImpl.sol

Description

StrPoolProviderImpl.getWithdrawAmount(uint256,uint256)

burnAmount = userStakedTokenAmount[msg.sender].mul(userShare).mul(percent).div(1e20);

contracts/v1/StrPoolProviderImpl.sol#140

burnAmount = userWrappedTokenAmount[msg.sender].mul(userShare).mul(percent).div(1e20);

contracts/v1/StrPoolProviderImpl.sol#144

The function “burnAmount” has redundant “mul(userShare)” and causes the wrong
calculation result.

Recommendation

The function will be correct once the “mul(userShare)” part is removed.

7

2.3 Informational Findings

3. Pragma usage

Severity: Informational Category: Coding Practice

Target:
- all

Description

pragma solidity ^0.6.12

Recommendation

Recommend using the most up-to-date version of the compiler.

4. Variable declaration

Severity: Informational Category: Coding Practice

Target:
- TradingHubImpl.sol

Description

require(estimatePrice.mul(amount).mul(9) <

amountOutMin.mul(10**(uint256(19).add(pool.stakedTokenDecimals).sub(pool.stableTokenDeci

mals))), "TradingHub: Slippage too large");

Recommendation

Recommend using variable declaration for 9 and 19 in the above function, which will be
beneficial for future code maintenance. Without the variable declaration, it can be confusing
for readers.

8

5. Contract clarification

Severity: Informational Category: Coding Practice

Target:
- all

Description

@openzeppelin/contracts/utils/Pausable.sol/util/Pausable.sol

The above two contracts “Pausable.sol” co-exist. Be aware when calling in case of
confusion.

6. Vulnerable function call

Severity: Informational Category: Coding Practice

Target:
- TradingHubImpl.sol
- StrPoolTraderImpl.sol

Description

TradingHubImpl.sellShort (#62)

IStrPool(pool.strToken).borrow(dexCenter.isSwapRouterV3(swapRouter), address(dexCenter),

swapRouter, position, msg.sender, amount, amountOutMin, path);

StrPoolTraderImpl.borrow (#25)

bytes memory data = delegateTo(dexCenter,

abi.encodeWithSignature("sellShort((bool,uint256,uint256,address,address,bytes))",

IDexCenter.SellShortParams({isSwapRouterV3: isSwapRouterV3, amountIn: amountIn,

amountOutMin: amountOutMin, swapRouter: swapRouter, to:address(this), path: path})));

The above two functions are sophisticated and can potentially result in the risk of modifying
StrPool status of “dexCenter.sellShort”.

9

7. Loop Import

Severity: Informational Category: Coding Practice

Target:
- IPoolGuardian.sol
- IPoolRewardModel.sol

Description

import "../IShorterBone.sol";

import "../../libraries/AllyLibrary.sol";

import "../../IShorterBone.sol";

import "./IRewardModel.sol";

import "../../../libraries/AllyLibrary.sol";

Redundant imports result in loop imports.

Recommendation

Recommend removing redundant imports.

10

8. Address lacks zero-check

Severity: Informational Category: Coding Practice

Target:
- PoolGuardianImpl.sol
- StrPoolProviderImpl.sol
- TradingHubImpl.sol
- ShorterBone.sol
- AuctionHallImpl.sol
- VaultButlerImpl.sol
- StrPoolTraderImpl.sol
- TreasuryImpl.sol

Description

ShorterBone.setTetherToken(address)._TetherToken

AuctionHallImpl.initialize(address,address,address,address,address,address,address,uint2

56,uint256)._dexCenter

AuctionHallImpl.initialize(address,address,address,address,address,address,address,uint2

56,uint256)._ipistrToken

AuctionHallImpl.setDexCenter(address).newDexCenter

PoolGuardianImpl.setWrapRouter(address).newWrapRouter

StrPoolProviderImpl.initialize(address,address,address,address,address,address,uint256,u

int256,uint256)._creator

StrPoolProviderImpl.initialize(address,address,address,address,address,address,uint256,u

int256,uint256)._tradingHub

TradingHubImpl.setDexCenter(address).IDexCenter(newDexCenter)

TradingHubImpl.setPriceOracle(address).IPriceOracle(newPriceOracle)

ShorterBone.constructor(address)._SAVIOR

PoolGuardianImpl.constructor(address)._SAVIOR

TradingHubImpl.constructor(address)._SAVIOR

AuctionHallImpl.constructor(address)._SAVIOR

VaultButlerImpl.constructor(address)._SAVIOR

StrPoolProviderImpl.constructor(address)._SAVIOR

StrPoolTraderImpl.constructor(address)._SAVIOR

TreasuryImpl.constructor(address)._SAVIOR

Recommendation

Recommend adding a zero check. For example: require(_SAVIOR != address(0),"receiver
can't be zero address");

11

9. Redundant import

Severity: Informational Category: Coding Practice

Target:
- VaultButlerImpl.sol
- PoolRewardModelImpl.sol

Description

import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";

import "@openzeppelin/contracts/utils/EnumerableSet.sol";

import "../libraries/OracleLibrary.sol";

import "@openzeppelin/contracts/utils/EnumerableSet.sol";

10. Revert function clarification

Severity: Informational Category: Coding Practice

Target:
- StrPoolProviderImpl.sol

Description

StrPoolProviderImpl.getWithdrawAmount

StrPoolProviderImpl._deposit

StrPoolProviderImpl._withdraw

StrPoolProviderImpl._transferWithHarvest

Redundant imports result in loop imports.

Recommendation

Recommend changing the revert functions in the above functions into the below format for
future bug tracing.

revert("StrPool getWithdrawAmount: Insufficient balance");

revert("StrPool _deposit: Insufficient balance");

revert("StrPool _withdraw: Insufficient balance");

revert("StrPool _transferWithHarvest: Insufficient balance");

12

11. Unchecked return value

Severity: Informational Category: Coding Practice

Target:
- TradingHubImpl.sol
- TreasuryImpl.sol

Description

TreasuryImpl.removeOwner(address)

TreasuryImpl._setOwner(address)

TradingHubImpl.sellShort(uint256,uint256,uint256,address,bytes)

The return values of the above functions are never checked.

Recommendation

Recommend removing redundant imports.

12. Centralization of power

Severity: Informational Category: Coding Practice

Target:
- TreasuryImpl.sol
- TradingHubImpl.sol
- Shorterbone.sol
- AuctionHallImpl.sol
- PoolGuardianImpl.sol
- VaultButlerImpl.sol

Description

Keeper manager has too much power. Recommend using MultiSigWallet and / DAO to

replace Keeper manager. The client has changed keeper manager to DAO, However, the

realization of DAO is beyond the auditing scope.

13

13. Missing event parameter

Severity: Informational Category: Coding Practice

Target:
- PoolGuardianImpl.sol

Description

PoolGuardianImpl.setStateFlag(uint256,PoolStatus)

PoolStatus is missing the event from “Liquidating; recover; genesis”.

14

14. Optimization

Severity: Informational Category: Coding Practice

Target:
- TreasuryImpl.sol

Description

uint256 _threshold = threshold;

No need to use temporary variables.

shorterBone.lockedMintable

No actual usage of the above function, hence can be deleted.

ShorterBone.addTokenWhiteList(address,address,uint256)

AuctionHallImpl.setDexCenter(address)

PoolGuardianImpl.setStrPoolImplementations(bytes4[],address)

PoolGuardianImpl.queryPools(address,IPoolGuardian.PoolStatus)

StrPoolTraderImpl.withdrawRemnantAsset(address)

TradingHubImpl.getPositionsByAccount(address,ITradingHub.PositionState)

TradingHubImpl.getPositionsByPoolId(uint256,ITradingHub.PositionState)

TradingHubImpl.getPositionsByState(ITradingHub.PositionState)

TradingHubImpl.setDexCenter(address)

TradingHubImpl.setPriceOracle(address)

TreasuryImpl.initialize(address[],uint256)

VaultButlerImpl.priceOfLegacy(address)

VaultButlerImpl.initialize(address,address,address,address)

TradingHubImpl.checkPath(bytes,address,address)

(contracts/v1/TradingHubImpl.sol#27-34) is never used and should be removed

Recommendation

Directly use threshold. Recommend changing the above functions to external. Recommend
changing the above functions to external. Recommend using the latest “require-error” to
save gas.

15

