

Overview

Project Summary

● Name: Solv Protocol

● Version: V3

● Platform: EVM-compatible chains

● Language: Solidity

● Repository: https://github.com/solv-finance/solv-contracts-v3

● Audit Range: See Appendix - 1

Project Dashboard

Application Summary

Name Solv Protocol V3

Version v2

Type Solidity

Dates Mar 10 2023

Logs Mar 1 2023; Mar 10 2023

Vulnerability Summary

Total High-Severity issues 1

Total Medium-Severity issues 1

Total Low-Severity issues 3

Total informational issues 6

Total 11

Contact
E-mail: support@salusec.io

1

https://github.com/solv-finance/solv-contracts-v3

Risk Level Description

High Risk

The issue puts a large number of users’ sensitive

information at risk, or is reasonably likely to lead to

catastrophic impact for clients’ reputations or serious

financial implications for clients and users.

Medium Risk

The issue puts a subset of users’ sensitive

information at risk, would be detrimental to the client’s

reputation if exploited, or is reasonably likely to lead

to a moderate financial impact.

Low Risk

The risk is relatively small and could not be exploited

on a recurring basis, or is a risk that the client has

indicated is low impact in view of the client’s business

circumstances.

Informational
The issue does not pose an immediate risk, but is

relevant to security best practices or defense in

depth.

2

Content

Introduction 4
1.1 About SALUS 4
1.2 Audit Breakdown 4
1.3 Disclaimer 4

Findings 5
2.1 Summary of Findings 5
2.2 Notable Findings 6

1. User can subscribe for free if price * value < 10**decimals 6
2. Centralization risk 8
3. Missing storage gap in upgradeable base contracts 9
4. Upgradeable dependency not initialized 10
5. doApprove() can fail silently if the underlying parameter is an EOA account 11

2.3 Informational Findings 13
6. Function visibility can be pure 13
7. SFTConcreteControl could be declared abstract 14
8. Incorrect error messages 15
9. Use calldata instead of memory for function parameters 16
10. Can use mapping(address=>bool) instead of address[] to store the whitelisted
addresses for an issueKey 18
11. Redundant code 20

Appendix 23
Appendix 1 - Files in Scope 23
Appendix 2 - Git repository changed 25

3

Introduction

1.1 About SALUS
At Salus Security, we are in the business of trust.

We are dedicated to tackling the toughest security challenges facing the industry today. By
building foundational trust in technology and infrastructure through security, we help clients
to lead their respective industries and unlock their full Web3 potential.

Our team of security experts employ industry-leading proof-of-concept (PoC) methodology
for demonstrating smart contract vulnerabilities, coupled with advanced red teaming
capabilities and a stereoscopic vulnerability detection service, to deliver comprehensive
security assessments that allow clients to stay ahead of the curve.

In addition to smart contract audits and red teaming, our Rapid Detection Service for smart
contracts aims to make security accessible to all. This high calibre, yet cost-efficient, security
tool has been designed to support a wide range of business needs including investment due
diligence, security and code quality assessments, and code optimisation.

We are reachable on Telegram (https://t.me/salusec), Twitter (https://twitter.com/salus_sec),
or Email (support@salusec.io).

1.2 Audit Breakdown
The objective was to evaluate the repository for security-related issues, code quality, and
adherence to specifications and best practices. Possible issues we looked for included (but
are not limited to):

● Risky external calls
● Integer overflow/underflow
● Transaction-ordering dependence
● Timestamp dependence
● Access control
● Call stack limits and mishandled exceptions
● Number rounding errors
● Centralization of power
● Logical oversights and denial of service
● Business logic specification
● Code clones, functionality duplication

1.3 Disclaimer
Note that this security audit is not designed to replace functional tests required before any
software release and does not give any warranties on finding all possible security issues with
the given smart contract(s) or blockchain software, i.e., the evaluation result does not
guarantee the nonexistence of any further findings of security issues.

4

https://t.me/salusec
https://twitter.com/salus_sec

Findings
2.1 Summary of Findings

ID Title Severity Category Status

1 User can subscribe for free if price * value <

10**decimals

High Business Logic Resolved

2 Centralization risk Med Centralization Acknowledged

3 Missing storage gap in upgradeable base

contracts

Low Business Logic Resolved

4 Upgradeable dependency not initialized Low Business Logic Resolved

5 doApprove() can fail silently if the underlying

parameter is an EOA account

Low Business Logic Resolved

6 Function visibility can be pure Informational Code Quality Resolved

7 SFTConcreteControl could be declared abstract Informational Code Quality Resolved

8 Incorrect error message Informational Auditing and
Logging

Resolved

9 Use calldata instead of memory for function

parameters

Informational Gas
Optimization

Resolved

10 Can use mapping(address=>bool) instead of

address[] to store the whitelisted addresses for

an issueKey

Informational Gas
Optimization

Resolved

11 Redundant code Informational Redundancy Resolved

5

2.2 Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

1. User can subscribe for free if price * value < 10**decimals

Severity: High Category: Business Logic

Target:
- markets/issue-market/contracts/IssueMarket.sol

Description

When a user subscribes to an SFT token from the issue market by using subscribe(), the
vars.payment amount of currency is transferred from the user to the IssueMarket contract,
while the corresponding SFT token is minted to the user.

markets/issue-market/contracts/IssueMarket.sol:L144
vars.payment = (vars.price * value_)/(10**vars.sftInfo.decimals);

However, if price * value < 10**decimals, the vars.payment will be 0 due to rounding to
zero. In this situation, the user can subscribe for free.

Proof of Concept
Here, we can do a PoC based on the existing test file
solv-contracts-v3/markets/issue-market/test/index.ts

First, we add some print statements to the test. We change the code from
solv-contracts-v3/markets/issue-market/test/index.ts:L115-L119
it("subscribe should be successful", async() => {

await currency.approve(market.address, payment);

const expireTime = await current() + 1000;

await market.subscribe(sft.address, slot, underwriterName, subscribeValue,

expireTime);

});

to
it("subscribe should be successful", async () => {

await currency.approve(market.address, payment);

const expireTime = (await current()) + 1000;

console.log(

"currency balance before subscribe:",

(await currency.balanceOf(deployer.address)).toNumber()

);

console.log(

"sft balance before subscribe",

(await sft["balanceOf(address)"](deployer.address)).toNumber()

);

6

https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/markets/issue-market/contracts/IssueMarket.sol#L144
https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/markets/issue-market/test/index.ts#LL19C12-L19C12
https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/markets/issue-market/test/index.ts#L115-L119

await market.subscribe(sft.address, slot, underwriterName, subscribeValue,

expireTime);

console.log(

"currency balance after subscribe:",

(await currency.balanceOf(deployer.address)).toNumber()

);

console.log(

"sft balance after subscribe",

(await sft["balanceOf(address)"](deployer.address)).toNumber()

);

});

When we run the test, the printed message is:
currency balance before subscribe: 100000000

sft balance before subscribe 0

currency balance after subscribe: 99999990

sft balance after subscribe 1

This means that the buyer has subscribed one sft token at a cost of 10 (100000000 -
99999990) amount of currency.

Then, we change the subscribeValue variable from
solv-contracts-v3/markets/issue-market/test/index.ts:L19
const subscribeValue = 100000000000;

to
const subscribeValue = 100000000;

So that price * subscribeValue < 10**decimals, and subscribeValue >= min.

When we rerun the test again, the printed message is:
currency balance before subscribe: 100000000

sft balance before subscribe 0

currency balance after subscribe: 100000000

sft balance after subscribe 1

This means that the buyer has subscribed to an SFT token for free!

Recommendation

Consider adding a require(vars.payment > 0); check to avoid free subscribing.

Status

This issue has been resolved by the team in commit f0b5483. The team has added the
following check:
require(vars.price == 0 || vars.payment > 0, "IssueMarket: payment must be greater than

0");

7

https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/markets/issue-market/test/index.ts#LL19-L19C37
https://github.com/solv-finance/solv-contracts-v3/blob/f0b54833decdaaf0c26984f6033966d18138e191/markets/prime/contracts/IssueMarket.sol#L141

2. Centralization risk

Severity: Medium Category: Centralization

Target:
- all

Description

The upgradeable proxy pattern is used throughout the Solv Protocol V3 codebase. The
proxy admin controls the upgrade mechanism to upgradeable proxies, they can change the
respective implementations. Should the admin’s private key be compromised, an attacker
could upgrade the logic contract to execute their own malicious logic on the proxy state.

There is also a privileged Owner role in the IssueMarket contract, the Owner of the
IssueMarket contract:

- can withdraw fees from the contract to any address
- can add or remove currencies from the whitelist
- can add or remove SFT tokens
- can add underwriters and add currencies for underwriters

Should the Owner’s private key be compromised, an attacker could drain all the funds from
the contract.

If the privileged accounts are plain EOA accounts, this can be worrisome and pose a risk to
the users.

Recommendation

Consider transferring the privileged roles to multi-sig accounts.

Status

This issue has been acknowledged by the team. The team has promised to transfer the
Owner of IssueMarket to an address with a timelock or voting mechanism in the future, and
to transfer the ProxyAdmin of IssueMarket and the ProxyAdmin of Payable to multisig
addresses after contract deployment.

8

3. Missing storage gap in upgradeable base contracts

Severity: Low Category: Business Logic

Target:
- common/solidity-utils/contracts/access/SFTConcreteControl.sol
- common/solidity-utils/contracts/access/SFTDelegateControl.so
- common/solidity-utils/contracts/access/AdminControl.sol
- common/solidity-utils/contracts/access/OwnControl.sol
- sft/core/contracts/BaseSFTDelegateUpgradeable.sol
- sft/core/contracts/BaseSFTConcreteUpgradeable.sol
- sft/abilities/contracts/issuable/SFTIssuableConcrete.sol
- sft/abilities/contracts/issuable/SFTIssuableDelegate.sol
- sft/abilities/contracts/multi-rechargeable/MultiRechargeableConcrete.sol
- sft/abilities/contracts/multi-rechargeable/MultiRechargeableDelegate.sol
- sft/abilities/contracts/multi-repayable/MultiRepayableConcrete.sol
- sft/abilities/contracts/multi-repayable/MultiRepayableDelegate.sol
- sft/abilities/contracts/mintable/SFTMintableConcrete.sol
- sft/abilities/contracts/mintable/SFTMintableDelegate.sol

Description

When using the proxy pattern for upgrades, it is common practice to include storage gaps in
parent contracts to reserve space for potential future variables.

According to the OpenZeppelin document, adding a storage gap to the upgradeable base
contract would allow the developers to freely add new state variables in the future without
compromising the storage compatibility with existing deployments.

However, the upgradeable base contracts in Solv Protocol V3 lack the storage gaps. Without
the storage gap, the variable in the child contract might be overwritten by the upgraded base
contract if new variables are added to the base contract. This could have unintended and
serious consequences for the child contracts, potentially resulting in the loss of user funds or
complete failure of the contract.

Recommendation

Consider adding appropriate storage gaps at the end of upgradeable base contracts. Please
refer to the OpenZeppelin upgradeable contract document.

Status

This issue has been resolved by the team in commit f0b5483.

9

https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
https://docs.openzeppelin.com/contracts/4.x/upgradeable
https://github.com/solv-finance/solv-contracts-v3/commit/f0b54833decdaaf0c26984f6033966d18138e191

4. Upgradeable dependency not initialized

Severity: Low Category: Business Logic

Target:
- markets/issue-market/contracts/IssueMarket.sol
- sft/core/contracts/BaseSFTDelegateUpgradeable.sol

Description

Upgradeable dependencies should be initialized.

sft/core/contracts/BaseSFTDelegateUpgradeable.sol:L14-L15

abstract contract BaseSFTDelegateUpgradeable is IBaseSFTDelegate,

ERC3525SlotEnumerableUpgradeable,

OwnControl, SFTDelegateControl, ReentrancyGuardUpgradeable {

markets/issue-market/contracts/IssueMarket.sol:L22

contract IssueMarket is IIssueMarket, IssueMarketStorage, ReentrancyGuardUpgradeable,

ResolverCache {

The ReentryancyGuardUpgradeable contract is inherited by

- BaseSFTDelegateUpgradeable
- IssueMarket

However, the ReentryancyGuardUpgradeable contract is not initialized in these contracts.

Although this is not a major issue since an uninitialized _status variable in the
ReentryancyGuardUpgradeable contract does not affect the operation of the nonReentrant()
modifier. However, it is recommended that you initialize all the upgradeable dependencies,
including ReentryancyGuardUpgradeable, to improve code consistency.

Recommendation

Consider initializing the ReentryancyGuardUpgradeable contract by using
__ReentrancyGuard_init() function in the initialization logic of the
BaseSFTDelegateUpgradeable contract and the IssueMarket contract.

Status

This issue has been resolved by the team in commit f0b5483.

10

https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/sft/core/contracts/BaseSFTDelegateUpgradeable.sol#L14-L15
https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/markets/issue-market/contracts/IssueMarket.sol#LL22-L22C102
https://github.com/solv-finance/solv-contracts-v3/commit/f0b54833decdaaf0c26984f6033966d18138e191

5. doApprove() can fail silently if the underlying parameter is an
EOA account

Severity: Low Category: Business Logic

Target:
- commons/solidity-utils/contracts/helpers/ERC20TransferHelper.sol

Description

commons/solidity-utils/contracts/helpers/ERC20TransferHelper.sol:L24-L41
function doApprove(

address underlying,

address spender,

uint256 amount) internal {

require(underlying != Constants.ETH_ADDRESS

&& underlying != Constants.ZERO_ADDRESS, "invalid underlying");

(bool success, bytes memory data) = underlying.call(

abi.encodeWithSelector(

ERC20Interface.approve.selector,

spender,

amount

)

);

require(

success && (data.length == 0 || abi.decode(data, (bool))),

"SAF"

);

}

The doApprove() function in the ERC20TransferHelper library uses a low-level function call
to do the ERC-20 approval.

According to the Solidity docs:
“The low-level functions call, delegatecall and staticcall return true as their first return value if
the account called is non-existent, as part of the design of the EVM. Account existence must
be checked prior to calling if needed.”

Therefore, if underlying is an EOA account, the low-level call, underlying.call(), will return
true and empty bytes, which will bypass the subsequent require() statement. The
doApprove() function will fail silently.

In terms of the Solv Protocol V3 codebase, the doApprove() function is only used by the
IssueMarket.subscribe() function. Since the underlying currency in the IssueMarket contract
can only be set by the Owner role, it is highly unlikely that an EOA address will be passed as
the underlying parameter to the doApprove() function, so the above issue is unlikely to occur.

11

https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/commons/solidity-utils/contracts/helpers/ERC20TransferHelper.sol#L24-L41
https://docs.soliditylang.org/en/develop/control-structures.html#error-handling-assert-require-revert-and-exceptions

Nevertheless, the potential risk should be documented in the doApprove() docstring in case
the doApprove() function is misused in future development. Better yet, a check for the
account’s existence of the underlying parameter can be added in the doApprove() function.

Recommendation

Consider checking whether the underlying parameter is an EOA address in the doApprove()
function.

Status

This issue has been resolved by the team in commit f0b5483.

12

https://github.com/solv-finance/solv-contracts-v3/commit/f0b54833decdaaf0c26984f6033966d18138e191

2.3 Informational Findings

6. Function visibility can be pure

Severity: Informational Category: Code Quality

Target:
- markets/issue-market/contracts/price/FixedPriceStrategy.sol

Description

markets/issue-market/contracts/price/FixedPriceStrategy.sol:L9

function getPrice(bytes memory priceInfo_) public view returns (uint256)

markets/issue-market/contracts/price/FixedPriceStrategy.sol:L14
function checkPrice(bytes memory priceInfo_) public view returns (bool)

The getPrice() and checkPrice() functions do not change or access the state variables within
the contract, the function visibility of them could be changed from view to pure.

The pure functions do not read or modify the state variables, which return the values only
using the parameters passed to the function or local variables present in it.

Recommendation

Consider changing the function visibility of the getPrice() and checkPrice() functions to pure.

Status

This issue has been resolved by the team in commit f0b5483.

13

https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/markets/issue-market/contracts/price/FixedPriceStrategy.sol#L9
https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/markets/issue-market/contracts/price/FixedPriceStrategy.sol#L14
https://github.com/solv-finance/solv-contracts-v3/commit/f0b54833decdaaf0c26984f6033966d18138e191

7. SFTConcreteControl could be declared abstract

Severity: Informational Category: Code Quality

Target:
- common/solidity-utils/contracts/access/SFTConcreteControl.sol
- sft/core/contracts/BaseSFTConcreteUpgradeable.sol

Description

commons/solidity-utils/contracts/access/SFTDelegateControl.sol:L7
abstract contract SFTDelegateControl is ISFTDelegateControl, AdminControl {

common/solidity-utils/contracts/access/SFTConcreteControl.sol:L8

contract SFTConcreteControl is ISFTConcreteControl, AdminControl {

The SFTDelegateControl contract is declared abstract, while the corresponding
SFTConcreteControl contract is not.

sft/core/contracts/BaseSFTConcreteUpgradeable.sol:L10
abstract contract BaseSFTConcreteUpgradeable is IBaseSFTConcrete, SFTConcreteControl {

In addition, the BaseSFTConcreteUpgradeable contract, which inherits from the
SFTConcreteControl contract, is also declared abstract.

To improve code consistency, the SFTConcreteControl can be declared abstract.

Recommendation

Consider declaring the SFTConcreteControl contract as an abstract class.

Status

This issue has been resolved by the team in commit f0b5483.

14

https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/commons/solidity-utils/contracts/access/SFTDelegateControl.sol#L7
https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/commons/solidity-utils/contracts/access/SFTConcreteControl.sol#L8
https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/sft/core/contracts/BaseSFTConcreteUpgradeable.sol#L10
https://github.com/solv-finance/solv-contracts-v3/commit/f0b54833decdaaf0c26984f6033966d18138e191

8. Incorrect error messages

Severity: Informational Category: Auditing and Logging

Target:
- markets/issue-market/contracts/IssueMarket.sol

Description

markets/issue-market/contracts/IssueMarket.sol:L170

require(input_.min <= input_.max, "IssueMarket: min must be less than max");

markets/issue-market/contracts/IssueMarket.sol:L172

require(input_.max <= input_.issueQuota, "IssueMarket: max must be less than

totalIssuance");

The above the error messages do not match the check, the check uses <=, while the error
message indicates < (less than).

Recommendation

Consider changing the description from “be less than” to “be no greater than” in the error
message.

Status

This issue has been resolved by the team in commit f0b5483.

15

https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/markets/issue-market/contracts/IssueMarket.sol#L170
https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/markets/issue-market/contracts/IssueMarket.sol#L172
https://github.com/solv-finance/solv-contracts-v3/commit/f0b54833decdaaf0c26984f6033966d18138e191

9. Use calldata instead of memory for function parameters

Severity: Informational Category: Gas Optimization

Target:
- markets/issue-market/contracts/whitelist/WhitelistStrategyManager.sol
- markets/issue-market/contracts/whitelist/IWhitelistStrategyManager.sol
- markets/issue-market/contracts/IssueMarket.sol
- sft/abilities/contracts/issuable/SFTIssuableConcrete.sol
- sft/abilities/contracts/issuable/SFTIssuableDelegate.sol
- sft/abilities/contracts/mintable/SFTMintableConcrete.sol
- sft/abilities/contracts/mintable/SFTMintableDelegate.sol
- sft/future/underwriter-profit/contracts/UnderwriterProfitConcrete.sol

Description

A common gas-saving practice is to use calldata instead of memory when the function
argument is read only.

1. markets/issue-market/contracts/whitelist/WhitelistStrategyManager.sol:L19
function setWhitelist(bytes32 issueKey_, address[] memory whitelist_) external virtual

override {

2. markets/issue-market/contracts/whitelist/IWhitelistStrategyManager.sol:L6
function setWhitelist(bytes32 issueKey_, address[] memory whitelist_) external;

3. markets/issue-market/contracts/IssueMarket.sol:L36
function issue(address sft_, address currency_, bytes memory inputSlotInfo_, bytes

memory inputIssueInfo_,

bytes memory inputPriceInfo_) external payable override nonReentrant returns

(uint256 slot_) {

4. markets/issue-market/contracts/IssueMarket.sol:L229
function addUnderwriterOnlyOwner(string memory underwriter_, uint16 defaultFeeRate_,

address[] calldata currencies_) public onlyOwner {

5. markets/issue-market/contracts/IssueMarket.sol:L239
function addUnderwriterCurrenciesOnlyOwner(string memory underwriter_, address[]

calldata currencies_) public onlyOwner {

6. sft/abilities/contracts/issuable/SFTIssuableConcrete.sol:L17
function createSlotOnlyDelegate(address txSender_, bytes memory inputSlotInfo_) public

virtual override onlyDelegate returns (uint256 slot_) {

7. sft/abilities/contracts/issuable/SFTIssuableDelegate.sol:L20
function createSlotOnlyIssueMarket(address txSender_, bytes memory inputSlotInfo_)

public virtual override nonReentrant returns(uint256 slot_) {

8. sft/abilities/contracts/mintable/SFTMintableConcrete.sol:L14
function createSlotOnlyDelegate(address txSender_, bytes memory inputSlotInfo_) external

virtual override onlyDelegate returns (uint256 slot_) {

16

https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/markets/issue-market/contracts/whitelist/WhitelistStrategyManager.sol#L19-L22
https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/markets/issue-market/contracts/whitelist/IWhitelistStrategyManager.sol#LL6C2-L6C81
https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/markets/issue-market/contracts/IssueMarket.sol#LL36C2-L37C103
https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/markets/issue-market/contracts/IssueMarket.sol#L229
https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/markets/issue-market/contracts/IssueMarket.sol#LL239C2-L239C123
https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/sft/abilities/contracts/issuable/SFTIssuableConcrete.sol#LL17C3-L17C148
https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/sft/abilities/contracts/issuable/SFTIssuableDelegate.sol#L20
https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/sft/abilities/contracts/mintable/SFTMintableConcrete.sol#L14

9. sft/abilities/contracts/mintable/SFTMintableDelegate.sol:L20
function createSlot(bytes memory inputSlotInfo_) public virtual override nonReentrant

returns (uint256 slot_) {

For the above functions, having function arguments in calldata instead of
memory is more optimal.

Recommendation

Consider using calldata instead of memory for read only function parameters to save gas.

Status

This issue has been resolved by the team in commit f0b5483.

17

https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/sft/abilities/contracts/mintable/SFTMintableDelegate.sol#L20
https://github.com/solv-finance/solv-contracts-v3/commit/f0b54833decdaaf0c26984f6033966d18138e191

10. Can use mapping(address=>bool) instead of address[] to
store the whitelisted addresses for an issueKey

Severity: Informational Category: Gas Optimization

Target:
- markets/issue-market/contracts/whitelist/WhitelistStrategyManager.sol

Description

markets/issue-market/contracts/whitelist/WhitelistStrategyManager.sol:L12-L32
mapping(bytes32 => address[]) private _whitelists;

...

function setWhitelist(bytes32 issueKey_, address[] memory whitelist_) external virtual

override {

require(_msgSender() == _issueMarket(), "only issue market");

whitelists[issueKey] = whitelist_;

}

function isWhitelisted(bytes32 issueKey_, address buyer_) external view virtual override

returns (bool) {

address[] memory whitelist = _whitelists[issueKey_];

for (uint256 i = 0; i < whitelist.length; i++) {

if (whitelist[i] == buyer_) {

return true;

}

}

return false;

}

...

In theWhitelistStrategyManager contract, all the whitelisted addresses for an issueKey are
stored in _whitelists[issueKey], which is an address[].

The _whitelists[issueKey] is only used in the setWhitelist() function and the isWhitelisted()
functions.

Therefore, the address[] structure can be replaced with a mapping(address=>bool) structure.
For example, we can define _whitelists as

mapping(bytes32 => mapping(address => bool)) _whitelists

And
- use _whitelists[issueKey][buyer] = true to add a buyer to the whitelist for

issueKey;
- use _whitelists[issueKey][buyer] to indicate whether the buyer’s address is

whitelisted for the issue key.

18

https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/markets/issue-market/contracts/whitelist/WhitelistStrategyManager.sol#L12-L32

Since the isWhitelisted() function iterates over the address array to check whether a buyer
address is whitelisted, using a mapping() instead of an array can save gas for the
isWhitelisted() function.

Recommendation

Consider declaring _whitelists as a nested mapping instead of a mapping to an address
array.

Status

This issue has been resolved by the team by declaring _whitelists as a nested mapping in
commit f0b5483.

19

https://github.com/solv-finance/solv-contracts-v3/commit/f0b54833decdaaf0c26984f6033966d18138e191

11. Redundant code

Severity: Informational Category: Redundancy

Target:
- markets/issue-market/contracts/IssueMarket.sol
- markets/issue-market/contracts/IssueMarket.sol
- markets/issue-market/contracts/IssueMarket.sol
- markets/issue-market/contracts/IssueMarketStorage.sol
- markets/issue-market/contracts/price/PriceStrategyManager.sol
- commons/address-resolver/contracts/ResolverCache.sol
- commons/solidity-utils/contracts/helpers/ERC20TransferHelper.sol
- commons/solidity-utils/contracts/helpers/ERC20TransferHelper.sol
- sft/future/payable/contracts/PayableConcrete.sol

Description
1. markets/issue-market/contracts/IssueMarket.sol:L71-L83
UnderwriterIssueInfo[] memory underwriterIssues = new
UnderwriterIssueInfo[](vars.inputIssueInfo.underwriters.length);
for (uint256 i = 0; i < vars.inputIssueInfo.underwriters.length; i++) {

string memory underwriterName = vars.inputIssueInfo.underwriters[i];
vars.underwriterKey = _getUnderwriterKey(underwriterName);
require(underwriterInfos[vars.underwriterKey].isValid, "IssueMarket: underwriters not

supported");
UnderwriterIssueInfo memory underwriterIssueInfo = UnderwriterIssueInfo({

name: underwriterName,
quota: vars.inputIssueInfo.quotas[i],
value: vars.inputIssueInfo.quotas[i]

});
underwriterIssueInfos[vars.underwriterKey][vars.issueKey] = underwriterIssueInfo;
underwriterIssues[i] = underwriterIssueInfo;

}

The underwriterIssues variable is redundant; thus the highlighted lines can be removed.

2. markets/issue-market/contracts/IssueMarket.sol:L12,L15
import

"@solvprotocol/contracts-v3-solidity-utils/contracts/helpers/ERC3525TransferHelper.sol";

...

import "./IIssueMarketStorage.sol";

ERC3525TransferHelper and IIssueMarketStorage are imported but not used, so they can
be removed.

3. markets/issue-market/contracts/IssueMarket.sol:L20
import "hardhat/console.sol";

console.sol is an unused import and can be removed.

4. markets/issue-market/contracts/IssueMarketStorage.sol:L34
mapping(bytes32 => EnumerableSet.Bytes32Set) issueKeys;

The state variable issueKeys is declared but never used; thus, it can be removed.

20

https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/markets/issue-market/contracts/IssueMarket.sol#L71-L83
https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/markets/issue-market/contracts/IssueMarket.sol#L12
https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/markets/issue-market/contracts/IssueMarket.sol#L15
https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/markets/issue-market/contracts/IssueMarket.sol#L20
https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/markets/issue-market/contracts/IssueMarketStorage.sol#L34

5. markets/issue-market/contracts/price/PriceStrategyManager.sol:L12-L14
struct FixedPrice {

uint256 price;

}

The struct FixedPrice is defined but not used in the PriceStrategyManager contract.

6. commons/address-resolver/contracts/ResolverCache.sol:L5

import "hardhat/console.sol";

console.sol is an unused import and can be removed.

7. commons/solidity-utils/contracts/helpers/ERC20TransferHelper.sol:L117-L119
function sub(uint256 a, uint256 b) internal pure returns (uint256) {

require(b <= a, "SafeMath: subtraction overflow");

return a - b;

}

Overflow is checked by default since Solidity v0.8.0, therefore, the require() check in the
sub() function is unnecessary.

8. commons/solidity-utils/contracts/helpers/ERC20TransferHelper.sol:L43-L82
function doTransferIn(

address underlying,
address from,
uint256 amount

) internal returns (uint256) {
if (underlying == Constants.ETH_ADDRESS) {

// Sanity checks
require(tx.origin == from || msg.sender == from, "sender mismatch");
require(msg.value >= amount, "value mismatch");

return amount;
} else {

require(msg.value == 0, "don't support msg.value");
uint256 balanceBefore = ERC20Interface(underlying).balanceOf(

address(this)
);
(bool success, bytes memory data) = underlying.call(

abi.encodeWithSelector(
ERC20Interface.transferFrom.selector,
from,
address(this),
amount

)
);
require(

success && (data.length == 0 || abi.decode(data, (bool))),
"STF"

);

// Calculate the amount that was *actually* transferred
uint256 balanceAfter = ERC20Interface(underlying).balanceOf(

address(this)
);
require(

balanceAfter >= balanceBefore,
"TOKEN_TRANSFER_IN_OVERFLOW"

);
return balanceAfter - balanceBefore; // underflow already checked above, just

21

https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/markets/issue-market/contracts/price/PriceStrategyManager.sol#L12-L14
https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/commons/address-resolver/contracts/ResolverCache.sol#L5
https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/commons/solidity-utils/contracts/helpers/ERC20TransferHelper.sol#L117-L119
https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/commons/solidity-utils/contracts/helpers/ERC20TransferHelper.sol#LL43C5-L82C6

subtract
}

}

Overflow is checked by default since Solidity v0.8.0, therefore, the overflow check in the
doTransferIn() function is unnecessary and the highlighted lines can be removed.

9. sft/future/payable/contracts/PayableConcrete.sol:L12
import "hardhat/console.sol";

console.sol is an unused import and can be removed.

Recommendation

Consider removing the redundant code.

Status

This issue has been resolved by the team in commit f0b5483.

22

https://github.com/solv-finance-dev/solv-contracts-v3/blob/a8b61eb98cd4ec1c559f587f9769c03836e3c413/sft/future/payable/contracts/PayableConcrete.sol#L12
https://github.com/solv-finance/solv-contracts-v3/commit/f0b54833decdaaf0c26984f6033966d18138e191

Appendix

Appendix 1 - Files in Scope
This audit covered the following files in
https://github.com/solv-finance-dev/solv-contracts-v3 (Commit a8b61eb):

File SHA-1 hash

commons/address-resolver/contracts
/AddressResolver.sol

98913117604d626d482f9bb31f7cae3b1a1d233f

commons/address-resolver/contracts
/ResolverCache.sol

dae69a2f641a645754e0c6db213faff485bfaedd

commons/solidity-utils/contracts/acc
ess/AdminControl.sol

57220b4fd53a60f552f61c9253b17881270b0319

commons/solidity-utils/contracts/acc
ess/OwnControl.sol

157634e86885d6db06ca49fac8d0bbb595ac47fa

commons/solidity-utils/contracts/acc
ess/SFTConcreteControl.sol

23730955f4488c25f2ab2aa6f81fea8290eea51c

commons/solidity-utils/contracts/acc
ess/SFTDelegateControl.sol

7e28e7156250f3e487b75be7c2707cfc8979a87b

commons/solidity-utils/contracts/help
ers/ERC20TransferHelper.sol

4e5425914eba9e36697bde718b87728d19fe574f

commons/solidity-utils/contracts/help
ers/ERC3525TransferHelper.sol

4ee02f76c63604a64fd1560803e1e9fb38418c52

markets/issue-market/contracts/whit
elist/WhitelistStrategyManager.sol

daf1a6e29a72c3ae016e556171309285eb14d9f4

markets/issue-market/contracts/Issu
eMarket.sol

3cb63ce8222eb209122e135ef95c36abd27c8a3d

markets/issue-market/contracts/price
/FixedPriceStrategy.sol

2a9e960c78eb5b0d33258aa325dd7c5668ace708

markets/issue-market/contracts/Issu
eMarketStorage.sol

f1991a3706ce4b61077be06fb2167651202316c2

sft/core/contracts/BaseSFTDelegate
Upgradeable.sol

31e2b0d75b4f6122b1043240c0d83b7d997aaebf

23

https://github.com/solv-finance-dev/solv-contracts-v3/tree/a8b61eb98cd4ec1c559f587f9769c03836e3c413

sft/core/contracts/BaseSFTConcrete
Upgradeable.sol

b0f8ba6bf96b935d6f9861c88d74cf3dc7bdc05e

sft/abilities/contracts/issuable/SFTIss
uableConcrete.sol

80ab4a2d947254ed962b31c371589c2e02bf6f64

sft/abilities/contracts/issuable/SFTIss
uableDelegate.sol

b2e97c2012894e338bfb593cfee1a31214115625

sft/abilities/contracts/issuable/MultiR
echargeableConcrete.sol

c2c0f850f79d8487b70953b663b614540e91c2a9

sft/abilities/contracts/multi-rechargea
ble/MultiRechargeableDelegate.sol

5d8dee3d2cdf4b45e9328f0f0c170e564ca06c53

sft/abilities/contracts/multi-rechargea
ble/MultiRepayableConcrete.sol

48ea5b35d55e70d5fcab040e8fb138161767bbc1

sft/abilities/contracts/multi-rechargea
ble/MultiRepayableDelegate.sol

d9977a7975b4f0d3e68acb505dd5cf2c5110c6a4

sft/abilities/contracts/mintable/SFTMi
ntableConcrete.sol

cd759eab8138f7229161b2c3f241834e8df32af7

sft/abilities/contracts/mintable/SFTMi
ntableDelegate.sol

c9fb1e1a99e24d34762b3a23b72b816d4cd1fa51

sft/future/payable/contracts/Payable
Delegate.sol

060626e21eb21530fe443d23d21a5d86ccbb6b3b

sft/future/payable/contracts/Payable
Concrete.sol

fe31fd310182e0547cf896e7944ad9fa842d9d9f

sft/future/payable/contracts/factories/
FactoryCore.sol

172f44d9fd28626eb83afb0fa68e5cab00e15c67

sft/future/payable/contracts/factories/
PayableConcreteFactory.sol

1dfaf8f080c6f61ab30d340957409a7a463db344

sft/future/payable/contracts/factories/
PayableDelegateFactory.sol

bc00bae71371b8b1536a62f8f594ddf7306b03b1

sft/future/underwriter-profit/contracts/
UnderwriterProfitConcrete.sol

0ccff7558420c81c5e3cc1228f4e86210eadaba5

sft/future/underwriter-profit/contracts/
UnderwriterProfitDelegate.sol

7aa9bf62f9617d275fe15a38332071bc5e07bad4

24

Appendix 2 - Git repository changed
The original Git repository and the commit ID of reviewed files is:

https://github.com/solv-finance-dev/solv-contracts-v3 (Commit a8b61eb)

After the team fixed all the issues, they decided to move the code to a public Git repository.

The following is the Git repository and the commit ID after all fixes of the issues:

https://github.com/solv-finance/solv-contracts-v3 (Commit 3f3ce5c)

During the process, the team has renamed some paths and contracts:

Before After

markets/issue-market markets/prime

sft/future sft/payable

sft/future/payable sft/payable/earn

sft/future/payable/IPayableConcrete.sol sft/payable/earn/IEarnConcrete.sol

sft/future/payable/PayableConcrete.sol sft/payable/earn/EarnConcrete.sol

sft/future/payable/IPayableDelegate.sol sft/payable/earn/IEarnDelegate.sol

sft/future/payable/PayableDelegate.sol sft/payable/earn/EarnDelegate.sol

sft/future/payable/factories/PayableDelegat
eFactory.sol

sft/payable/earn/factories/EarnDelegateFact
ory.sol

sft/future/payable/factories/PayableConcret
eFactory.sol

sft/payable/earn/factories/EarnConcreteFac
tory.sol

25

https://github.com/solv-finance-dev/solv-contracts-v3/tree/a8b61eb98cd4ec1c559f587f9769c03836e3c413
https://github.com/solv-finance/solv-contracts-v3/tree/3f3ce5c810f41bb3c2cad191d395a0ad44d5c223

