
0

Overview

Project Summary

● Name: Thrupenny

● Version: Commit b58cedd

● Platform: Ethereum

● Language: Solidity

● Repository: https://github.com/0xBuooy/erc20-smart-vesting-contract

● Audit Range: See Appendix - 1

Project Dashboard

Application Summary

Name Thrupenny

Version v2

Type Solidity

Dates Feb 17 2023

Logs Feb 03 2023; Feb 17 2023

Vulnerability Summary

Total High-Severity issues 0

Total Medium-Severity issues 0

Total Low-Severity issues 2

Total informational issues 4

Total 6

Contact
E-mail: support@salusec.io

1

https://github.com/0xBuooy/erc20-smart-vesting-contract/commit/b58ceddd4c08b50ce9cacab547aa9e39de7aecdf

Risk Level Description

High Risk

The issue puts a large number of users’ sensitive

information at risk, or is reasonably likely to lead to

catastrophic impact for clients’ reputations or serious

financial implications for clients and users.

Medium Risk

The issue puts a subset of users’ sensitive

information at risk, would be detrimental to the client’s

reputation if exploited, or is reasonably likely to lead

to a moderate financial impact.

Low Risk

The risk is relatively small and could not be exploited

on a recurring basis, or is a risk that the client has

indicated is low impact in view of the client’s business

circumstances.

Informational
The issue does not pose an immediate risk, but is

relevant to security best practices or defense in

depth.

2

Content

Introduction 4
1.1 About SALUS 4
1.2 Audit Breakdown 4
1.3 Disclaimer 4

Findings 5
2.1 Summary of Findings 5
2.2 Notable Findings 6

1. Unnecessary receive and fallback function 6
2. Centralization risk 7

2.3 Informational Findings 8
3. Single-step ownership transfer pattern risk 8
4. Redundant code 9
5. SafeMath library not needed since Solidity 0.8.0 10
6. Gas optimization suggestions 11

Appendix 12
Appendix 1 - Files in Scope 12

3

Introduction

1.1 About SALUS
At Salus Security, we are in the business of trust.

We are dedicated to tackling the toughest security challenges facing the industry today. By
building foundational trust in technology and infrastructure through security, we help clients
to lead their respective industries and unlock their full Web3 potential.

Our team of security experts employ industry-leading proof-of-concept (PoC) methodology
for demonstrating smart contract vulnerabilities, coupled with advanced red teaming
capabilities and a stereoscopic vulnerability detection service, to deliver comprehensive
security assessments that allow clients to stay ahead of the curve.

In addition to smart contract audits and red teaming, our Rapid Detection Service for smart
contracts aims to make security accessible to all. This high calibre, yet cost-efficient, security
tool has been designed to support a wide range of business needs including investment due
diligence, security and code quality assessments, and code optimisation.

We are reachable on Telegram (https://t.me/salusec), Twitter (https://twitter.com/salus_sec),
or Email (support@salusec.io).

1.2 Audit Breakdown
The objective was to evaluate the repository for security-related issues, code quality, and
adherence to specifications and best practices. Possible issues we looked for included (but
are not limited to):

● Risky external calls
● Integer overflow/underflow
● Transaction-ordering dependence
● Timestamp dependence
● Access control
● Call stack limits and mishandled exceptions
● Number rounding errors
● Centralization of power
● Logical oversights and denial of service
● Business logic specification
● Code clones, functionality duplication

1.3 Disclaimer
Note that this security audit is not designed to replace functional tests required before any
software release and does not give any warranties on finding all possible security issues with
the given smart contract(s) or blockchain software, i.e., the evaluation result does not
guarantee the nonexistence of any further findings of security issues.

4

https://t.me/salusec
https://twitter.com/salus_sec

Findings
2.1 Summary of Findings

ID Title Severity Category Status

1 Unnecessary receive and fallback function Low Business Logic Resolved

2 Centralization risk Low Centralization Acknowledged

3 Single-step ownership transfer pattern risk Informational Authentication Acknowledged

4 Redundant code Informational Redundancy Acknowledged

5 SafeMath library not needed since Solidity 0.8.0 Informational Redundancy Acknowledged

6 Gas optimization suggestions Informational gas optimization Resolved

5

2.2 Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

1. Unnecessary receive and fallback function

Severity: Low Category: Business Logic

Target:
- contracts/TokenVesting.sol

Description

contracts/TokenVesting.sol:L67-L69

receive() external payable {}

fallback() external payable {}

There is a payable fallback function and a payable receive function in the TokenVesting
contract that allows the contract to receive funds from other addresses. However, there is no
withdrawal logic in the Token Vesting contract.
As a result, if one accidentally sends Ether to the TokenVesting contract, the funds are
locked in the contract and there is no way to move the funds out.

Recommendation
Consider removing the payable fallback function and payable receive function. Receiving
ether is an unexpected function of the TokenVesting contract.

Status
This issue has been resolved by the team by removing the payable fallback function and
payable receive function in commit d7d26b4.

6

https://github.com/0xBuooy/erc20-smart-vesting-contract/commit/d7d26b425cb82485d631a1ccc7254fd0bcf59062

2. Centralization risk

Severity: Low Category: Centralization

Target:
- contracts/TokenVesting.sol

Description

contracts/TokenVesting.sol:L140-L153

/**

* @notice Revokes the vesting schedule for given identifier.

* @param vestingScheduleId the vesting schedule identifier

*/

function revoke(bytes32 vestingScheduleId) public onlyOwner

onlyIfVestingScheduleNotRevoked(vestingScheduleId) {

VestingSchedule storage vestingSchedule = vestingSchedules[vestingScheduleId];

uint256 vestedAmount = _computeReleasableAmount(vestingSchedule);

if(vestedAmount > 0){

release(vestingScheduleId, vestedAmount);

}

uint256 unreleased = vestingSchedule.amountTotal.sub(vestingSchedule.released);

vestingSchedulesTotalAmount = vestingSchedulesTotalAmount.sub(unreleased);

vestingSchedule.revoked = true;

}

The owner in TokenVesting can call revoke() to revoke the vesting schedule for a given
identifier. If the owner’s private key is compromised and obtained by a malicious person who
then calls this function. The vesting schedule for the given identifier will be canceled.
If the privileged owner account is a plain EOA account, this can be worrisome and pose a
risk to the users.

Recommendation
It is recommended to use a Multisig wallet for the owner address.

Status
This issue has been acknowledged by the team.

7

2.3 Informational Findings

3. Single-step ownership transfer pattern risk

Severity: Informational Category: Authentication

Target:
- contracts/TokenVesting.sol

Description

contracts/TokenVesting.sol:L8

import "@openzeppelin/contracts/access/Ownable.sol";

Inheriting from OpenZeppelin's Ownable contract means that you are using a single-step
ownership transfer pattern. If an admin provides an incorrect address for the new owner this
will result in none of the methods modified by onlyOwner being callable.
There is an Ownable2Step.sol contract in the OpenZeppelin library that is designed for
two-step ownership transfer which is more secure than the single-step ownership transfer
used by Ownable.sol.

Recommendation
Consider using OpenZeppelin's Ownable2Step.sol instead of Ownable.sol.

Status
This issue has been acknowledged by the team.

8

https://docs.openzeppelin.com/contracts/4.x/api/access#Ownable2Step
https://docs.openzeppelin.com/contracts/4.x/api/access#Ownable2Step

4. Redundant code

Severity: Informational Category: Redundancy

Target:
- contracts/TokenVesting.sol

Description
contracts/TokenVesting.sol:L4
import "@openzeppelin/contracts/finance/VestingWallet.sol";

contracts/TokenVesting.sol:L9-L10
import "@openzeppelin/contracts/utils/math/Math.sol";

The VestingWallet.sol and Math.sol are unused imports.

contracts/TokenVesting.sol:L120
require(this.getWithdrawableAmount() >= vestingAmount, "TokenVesting: not enough

withdrawable funds");

contracts/TokenVesting.sol:L123
bytes32 vestingScheduleId =

this.computeNextVestingScheduleIdForHolder(beneficiaryAddress);

contracts/TokenVesting.sol:L223
require(this.getWithdrawableAmount() >= burnAmount, "TokenBurning: not enough

withdrawable funds");

The function visibility of getWithdrawableAmount and
computeNextVestingScheduleIdForHolder is public, so this keyword is not required for
contract internal.

contracts/TokenVesting.sol:L225-L226
_token.approve(address(0x000000000000000000000000000000000000dEaD), 0);

_token.approve(address(0x000000000000000000000000000000000000dEaD), burnAmount);

The above lines are unnecessary.

contracts/TokenVesting.sol:L182

address payable beneficiaryPayable = payable(vestingSchedule.beneficiary);

The address does not need to be declared as payable since there is no ether sending to it.

Recommendation
Consider removing the redundant code.

Status
This issue has been acknowledged by the team. The redundant this keyword has been
removed in commit d7d26b4.

9

https://github.com/0xBuooy/erc20-smart-vesting-contract/commit/d7d26b425cb82485d631a1ccc7254fd0bcf59062

5. SafeMath library not needed since Solidity 0.8.0

Severity: Informational Category: Redundancy

Target:
- contracts/TokenVesting.sol

Description

contracts/TokenVesting.sol:L6
import "@openzeppelin/contracts/utils/math/SafeMath.sol";

SafeMath is used to check underflow and overflow for arithmetic operations. However, since
Solidity version 0.8.0, arithmetic operations revert on underflow and overflow by default.
Since the bounce project uses a Solidity version no less than 0.8.0, it is unnecessary to use
the SafeMath library.

Recommendation
It is recommended to remove the SafeMath library.

Status
This issue has been acknowledged by the team.

10

6. Gas optimization suggestions

Severity: Informational Category: gas optimization

Target:
- contracts/TokenVesting.sol

Description

contracts/TokenVesting.sol:L33
uint256 private burntTotalAmount = 0;

The default value for uint256 type is 0. Removing redundant variable initialization can reduce
gas cost.

contracts/TokenVesting.sol:L119
function createVestingSchedule(address beneficiaryAddress, uint256 vestingAmount, uint8

vestingType) public onlyOwner nonReentrant

contracts/TokenVesting.sol:L144
function revoke(bytes32 vestingScheduleId) public onlyOwner

onlyIfVestingScheduleNotRevoked(vestingScheduleId)

contracts/TokenVesting.sol:L199-L200
function computeReleasableAmount(bytes32 vestingScheduleId) public

contracts/TokenVesting.sol:L264-L265
function getLastVestingScheduleForHolder(address holder) public

The createVestingSchedule(), revoke(), computeReleasableAmount(),
getLastVestingScheduleForHolder() functions are not called inside the contract; thus, the
visibility can be changed to external to save gas.

Recommendation
It is recommended to remove redundant variable initialization and change the function
visibility to external for functions that are not called within the contract.

Status
This issue has been resolved by the team in commit d7d26b4.

11

https://github.com/0xBuooy/erc20-smart-vesting-contract/commit/d7d26b425cb82485d631a1ccc7254fd0bcf59062

Appendix

Appendix 1 - Files in Scope
This audit covered the following file in Commit b58cedd :

File SHA-1 hash

TokenVesting.sol 255114301927d883fd4148b2f884c0fe4692b938

12

https://github.com/0xBuooy/erc20-smart-vesting-contract/commit/b58ceddd4c08b50ce9cacab547aa9e39de7aecdf

