

Overview

Project Summary

● Name: TopGoal
● Version: v1.0.0
● Platform: BSC
● Language: Solidity
● Repository:

https://github.com/topgoalnft/goal-contract/tree/4a2d368f222d6548c73635c1
e5cdfe0c2d63ccf8

● Audit Scope: See Appendix A

Project Dashboard

Application Summary

Name TopGoal

Version v2

Type Solidity

Dates Jan 04 2023

Logs Dec 23 2022; Jan 04 2023

Vulnerability Summary

Total High-Severity issues 0

Total Medium-Severity issues 0

Total Low-Severity issues 1

Total informational issues 3

Total 4

Contact
E-mail: support@salusec.io

1

Risk Level Description

High Risk

The issue puts a large number of users’ sensitive

information at risk, or is reasonably likely to lead to

catastrophic impact for clients’ reputations or serious

financial implications for clients and users.

Medium Risk

The issue puts a subset of users’ sensitive

information at risk, would be detrimental to the client’s

reputation if exploited, or is reasonably likely to lead

to a moderate financial impact.

Low Risk

The risk is relatively small and could not be exploited

on a recurring basis, or is a risk that the client has

indicated is low impact in view of the client’s business

circumstances.

Informational
The issue does not pose an immediate risk, but is

relevant to security best practices or defense in

depth.

2

Content

Introduction 3
1.1 About SALUS 3
1.2 Audit Breakdown 4
1.3 Disclaimer 4

Findings 4
2.1 Summary of Findings 4
2.2 Notable Findings 5

1. Missing whenNotPaused modifier 5
2.3 Informational Findings 6

2. Constructor visibility not needed 6
3. Code with no effect 7
4. SafeMath library not needed 8

Appendix 9
Appendix A - Files in Scope 9

3

Introduction

1.1 About SALUS
At Salus Security, we are in the business of trust.

We are dedicated to tackling the toughest security challenges facing the industry today. By
building foundational trust in technology and infrastructure through security, we help clients
to lead their respective industries and unlock their full Web3 potential.

Our team of security experts employ industry-leading proof-of-concept (PoC) methodology
for demonstrating smart contract vulnerabilities, coupled with advanced red teaming
capabilities and a stereoscopic vulnerability detection service, to deliver comprehensive
security assessments that allow clients to stay ahead of the curve.

In addition to smart contract audits and red teaming, our Rapid Detection Service for smart
contracts aims to make security accessible to all. This high calibre, yet cost-efficient, security
tool has been designed to support a wide range of business needs including investment due
diligence, security and code quality assessments, and code optimisation.

We are reachable on Telegram (https://t.me/salusec), Twitter (https://twitter.com/salus_sec),
or Email (support@salusec.io).

1.2 Audit Breakdown
The objective was to evaluate the repository for security-related issues, code quality, and
adherence to specifications and best practices. Possible issues we looked for included (but
are not limited to):

● Risky external calls
● Integer overflow/underflow
● Transaction-ordering dependence
● Timestamp dependence
● Access control
● Call stack limits and mishandled exceptions
● Number rounding errors
● Centralization of power
● Logical oversights and denial of service
● Business logic specification
● Code clones, functionality duplication

1.3 Disclaimer
Note that this security audit is not designed to replace functional tests required before any
software release and does not give any warranties on finding all possible security issues with
the given smart contract(s) or blockchain software, i.e., the evaluation result does not
guarantee the nonexistence of any further findings of security issues.

4

https://t.me/salusec
https://twitter.com/salus_sec

Findings
2.1 Summary of Findings

ID Title Severity Category Status

1 Missing whenNotPaused modifier Low Access Control Resolved

2 Constructor visibility not needed Informational Redundancy Resolved

3 Code with no effect Informational Redundancy Resolved

4 SafeMath library not needed Informational Redundancy Acknowledged

5

2.2 Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

1. Missing whenNotPaused modifier

Severity: Low Category: Access Control

Target: - contracts/TopGoalToken.sol

Description
contracts/TopGoalToken.sol:L111, L124
function delegate(address delegatee) external {...}

function delegateBySig(
address delegatee,
uint nonce,
uint expiry,
uint8 v,
bytes32 r,
bytes32 s

)
external

{...}

In TopGoalToken, the _beforeTokenTransfer() function contains the whenNotPaused
modifier, while delegate() and delegateBySig() do not.
All critical external functions should contain the whenNotPaused modifier to stop
transactions while paused.

Recommendation
Consider adding the whenNotPaused modifier to delegate() and delegateBySig()
function delegate(address delegatee) whenNotPaused external {...}

function delegateBySig(
address delegatee,
uint nonce,
uint expiry,
uint8 v,
bytes32 r,
bytes32 s

)
whenNotPaused
external

{...}

Status This issue has been fixed in the commit: a113c56.

6

https://github.com/topgoalnft/goal-contract/tree/a113c5649c4f54bac1ec2a5c11e74f7e12705fa2

2.3 Informational Findings

2. Constructor visibility not needed

Severity: Informational Category: Redundancy

Target:
- contracts/BEP20.sol
- contracts/TopGoalToken.sol

Description

Constructors no longer require visibility (public or external) since Solidity 0.7.0. Therefore,
the public modifier in the following constructors can be removed.

contracts/BEP20.sol:L59
constructor(string memory name_, string memory symbol_) public {...}

contracts/TopGoalToken.sol:L55
constructor()

BEP20("TopGoal Token", "Goal") public

{...}

Status This issue has been fixed in the commit: a113c56.

7

https://github.com/topgoalnft/goal-contract/tree/a113c5649c4f54bac1ec2a5c11e74f7e12705fa2

3. Code with no effect

Severity: Informational Category: Redundancy

Target:
- contracts/TopGoalToken.sol

Description

contracts/TopGoalToken.sol:L44-L50
constructor()

BEP20("TopGoal Token", "Goal") public
{

uint256 amount = 1000000000 * 10 ** 18;
_mint(msg.sender, amount);
_moveDelegates(address(0), _delegates[msg.sender], amount);

}

The _moveDelegates(..) line has no effect; therefore, it can be removed.

Status This issue has been fixed in the commit: a113c56.

8

https://github.com/topgoalnft/goal-contract/tree/a113c5649c4f54bac1ec2a5c11e74f7e12705fa2

4. SafeMath library not needed

Severity: Informational Category: Redundancy

Target:
- contracts/BEP20.sol

Description

contracts/BEP20.sol:L8

import '@openzeppelin/contracts/utils/math/SafeMath.sol';

SafeMath is used to check underflow and overflow for arithmetic operations. However, since
Solidity version 0.8.0, arithmetic operations revert on underflow and overflow by default.
Since BEP20 uses a Solidity version no less than 0.8.0, it is unnecessary to use the
SafeMath library.

Status This issue has been acknowledged by the team.

9

Appendix
Appendix A - Files in Scope
This audit covered the following files:

File SHA-1 hash

contracts/BEP20.sol 9f172fe2fc18805a4275eb224e4523ad8c641b7e

contracts/IBEP20.sol d3d5fb23a1d6246aa1e284a1e38d5210a8e08217

contracts/TopGoalToken.sol 8bf1fb7d79fab9a4b5fd5a3c1838476f5969a90b

10

